Bamboo-Containing Composites with Environmentally Friendly Binders

: pp. 807 - 819
1 Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
Ivane Javakhishvili’ Tbilisi State University, Department of Macromolecular Chemistry; Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University, Sokhumi State University, Faculty of Natural Sciences, Mathematics, Technologies and Pharmacy,
Ivane Javakhishvili Tbilisi State University R.Agladze Institute of Inorganic Chemistry and Electrochemistr
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University

The environmentally friendly binder - poly[(trimethoxy)4-vinylphenethyl)] silane was synthesized for the first time via Friedel-Crafts alkylation reaction, which was conducted by the reaction of polystyrene with vinyltrimethoxysilane in the presence of anhydrous AlCl3.The synthesized polymer was identified using 1H, 13C, 1H COSY NMR, and FTIR spectroscopy. Bamboo sawdust-based composites with various dispersion properties have been created using synthetic trimethoxysilylated polystyrene (TMSPSt) and styrenewith various degrees of silylation (5-10%). Composite materialsbased on bamboo powder with various organic/inorganic additives, flame retardants, and antioxidants, were processed at different temperatures and pressures using the hot pressing method. Obtained compositeswere studied by Fourier transformation infrared spectroscopy (FTIR), optical and scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Thermal stability of the obtained materials was determined by thermogravimetry and the Vicat method. Also, water absorption and some mechanical properties were studied.

  1. Sapuan, S.M.; Aulia, H.S.; Ilyas, R.A.; Atiqah, A.; Dele-Afolabi, T.T.; Nurazzi, M.N.; Supian, A.B.M.; Atikah, M.S.N. MechanicalProperties of Longitudinal Basalt/Woven-Glass-Fiber-reinforced Unsaturated Polyester-Resin Hybrid Composites. Polymers2020,12, 2211.
  2. Zia, F.; Zia, K.M.; Zuber, M.; Kamal, S.; Aslam, N. Starch Based Polyurethanes: A Critical Review Updating Recent Literature.Carbohydr. Polym.2015, 134, 784–798.
  3. Syafiq, R.; Sapuan, S.; Zuhri, M. Antimicrobial Activity, Physical, Mechanical and Barrier Properties of Sugar Palm-Based Nano Cellulose/Starch Biocomposite Films Incorporated with Cinnamon Essential Oil. J. Mater. Res. Technol. 2021, 11, 144–157.
  4. Syafiq, R.; Sapuan, S.M.; Zuhri, M.Y.M.; Ilyas, R.A.; Nazrin, A.; Sherwani, S.F.K.; Khalina, A. Antimicrobial Activities of Starch-Based Biopolymers and Biocomposites Incorporated with Plant Essential Oils: A Review. Polymers2020, 12, 2403.
  5. Radzi, A.M.; Sapuan, S.M.; Jawaid, M.; Mansor, M.R. Effect of Alkaline Treatment on Mechanical, Physical and Thermal Propertiesof Roselle/Sugar Palm Fiber Reinforced Thermoplastic Polyurethane Hybrid Composites. Fibers Polym. 2019, 20, 847–855.
  6. Nadlene, R.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Yusriah, L. A Review on Roselle Fiber and Its Composites. J. Nat. Fibers2016,13, 10–41.
  7. Ishak, M.R.; Sapuan, S.M.; Leman, Z.; Rahman, M.Z.A.; Anwar, U.M.K.; Siregar, J.P. Sugar Palm (Arengapinnata): ItsFibres, Polymers and Composites. Carbohydr. Polym. 2013, 91, 699–710.
  8. Suhot, M.; Hassan, M.; Aziz, S.; Daud, M.M. Recent Progress of Rice Husk Reinforced Polymer Composites: A Review. Polymers2021, 13, 2391.
  9. Radzi, A.M.; Sapuan, S.M.; Jawaid, M.; Mansor, M.R. Mechanical Performance of Roselle/Sugar Palm Fiber Hybrid ReinforcedPolyurethane Composites.Bioresources2018, 13, 6238–6249.
  10. Ali, M.R.; Salit, M.S.; Jawaid, M.; Mansur, M.R.; Manap, M.F.A. Polyurethane-Based Biocomposites; Elsevier Inc.: Amsterdam,The Netherlands, 2017.
  11. Ilyas, R.A.; Sapuan, S.M.; Ibrahim, R.; Abral, H.; Ishak, M.; Zainudin, E.; Asrofi, M.; Atikah, M.S.N.; Huzaifah, M.R.M.; Radzi,A.M.; et al. Sugar Palm (Arengapinnata (Wurmb.) Merr) Cellulosic Fibre Hierarchy: A Comprehensive Approach from Macro to NanoScale. J. Mater. Res. Technol. 2019, 8, 2753–2766.
  12. Kasim, F.A.M.; Roslan, S.A.H.; Rasid, Z.A.; Yakub, F.; Hassan, M.Z.; Yahaya, H. Post-Buckling of Bamboo Reinforced CompositePlates. IOP Conference Series: Materials Science and Engineering 2021, 1051, 012040.
  13. Sari, N.H.; Pruncu, C.I.; Sapuan, S.M.; Ilyas, R.A.; Catur, A.D.; Suteja, S.; Sutaryono, Y.A.; Pullen, G. The Effect of Water Immersion and Fibre Content on Properties of Corn Husk Fibres Reinforced Thermoset Polyester Composite. Polym Test2020, 91, 106751.
  14. Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A.; Rafidah, M.; Razman, M.R. Potential Application of GreenComposites for Cross Arm Component in Transmission Tower: A Brief Review. Int J PolymSci2020,2020, 8878300.
  15. Venkatesha, B.; Saravanan, R.; Bavan, D.S. Review on Mechanical Properties and Fatigue Life of E-Glass/Bamboo Fiber ReinforcedPolymer Composites.International Journal of Engineering Sciences & Management2017, 7, 52–57.
  16. Radzi A.M.; Zaki, S.A.; Hassan, M.Z.; Ilyas,R.A.; Jamaludin, K.R.; Md Daud, M.Y.; Aziz, S.A.Bamboo-Fiber-Reinforced Thermoset and Thermoplastic Polymer Composites: A Review of Properties, Fabrication, and Potential Applications. Polymers2022, 14, 1387.
  17. Ramesh, M.; Palanikumar, K.; Reddy, K.H. Plant Fibre Based Bio-Composites: Sustainable and Renewable Green Materials.Renew. Sust. Energ. Rev.2017, 79, 558–584.
  18. Martijanti, M.;Sutarno, S.;Juwono, A.L. Polymer Composite Fabrication Reinforced with Bamboo Fiberfor Particle Board Product Raw Material Application.Polymers2021, 13, 4377.
  19. Bamboo Fiber Composites; Processing, Properties and Applications; Jawaid, M.;Rangappa, S.M.;Siengchin, S., Eds.; Springer Singapore,2021.
  20. Tomalang, F.N.; Lopez, A.R.;Semara, J.A.;Casin, R.F.;Espiloy, Z.B. Properties and Utilization of Philippine erect bamboo. In Bamboo research in Asia: proceedings of a workshop held in Singapore, 28-30 May 1980;IDRC, Ottawa, ON, CA,2008; pp266–275.
  21. Lykidis, C.;Grigoriou, A. Hydrothermal Recycling of Waste and Performance of the Recycled Wooden Particleboards.Waste Manage. 2008, 28, 57–63.
  22. Abdulkareem, S.A.;Adeniyi, A.G. Production of Particleboards Using Polystyrene and Bamboo Wastes. Niger. J. Technol. 2017,36,788–793.
  23. Ramesh, M.;RajeshKumar, L.;Bhuvaneshwari, V. Bamboo Fiber Reinforced Composites. In Bamboo Fiber Composites; Jawaid, M.;Rangappa, S.M.;Siengchin, S., Eds.; Springer Singapore, 2021; pp 1–13.
  24. Mukbaniani, O.;Brostow, W.;HaggLobland, H.E.;Aneli, J.;Tatrishvili, T.;Markarashvili, E.;Dzidziguri, D.;Buzaladze, G.Composites Containing Bamboo with Different Binders.Pure Appl. Chem. 2018, 90, 1001–1009.
  25. Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani, O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11, 201–209.
  26. Tolentino, M.S.;Carpena, J.F.; Javier, R.M.; Aquino, R.R. Thermal Treatment Temperature and Time Dependence of Contact Angle of Water on Fluorinated Polystyrene as Hydrophobic Film Coating. IOP Conf. Ser.: Mater. Sci. Eng.2017, 205,012024.
  27. Mukbaniani, O.;Tatrishvili,T.;Markarashvili,E.; Londaridze,L.; Pachulia, Z.;Pirtskheliani, N. Synthesis of Triethoxy(Vinylphenethyl)Silane With Alkylation Reaction ofVinyltriethoxysilane to Styrene. Oxid. Commun. 2022, 45, 309–320.
  28. Demchuk, Y.; Gunka, V.; Pyshyiv, S.;Sidun, Y.; Hrynchuk, Y.; Kucinska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixed on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin.Chem. Chem. Technol. 2020, 14, 251–256.
  29. Bashta, B.;Astakhova, O.;Shyshchak, O.;Bratychak, M. Epoxy Resins Chemical Modification by Dibasic Acids. Chem. Chem. Technol. 2014, 8(3), 309–316.
  30. Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phenomenon during Drop Impact Testing and Its Simple Dynamics Model. World J. Mech.2015,5,33-41.
  31. Mukbaniani, O.;Brostow, W.;Aneli, J.;Londaridze, L.;Markarashvili, E.;Tatrishvili, T.;Gencel, O. Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption. Chem. Chem. Technol. 2022, 16, 377–386.
  32. Smith, B.C.Distinguishing Structural Isomers: Mono- and Disubstituted Benzene Rings. Spectroscopy2016, 31, 36-39.
  33. Swanson, N.Polybutadiene graft copolymers as coup¬ling agents in rubber compounding. Ph.D. Thesis, Graduate Faculty of the University of Akron, Akron, USA,2016.
  34. ChemBioDraw Ultra 12.
  35. MestreNova.
  36. Kyle A. Baseden and Jesse W. Tye.Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom.J. Chem. Educ. 2014, 12, 2116–2123.
  37. Tatrishvili, T.; Koberidze, Kh.;Mukbaniani, O.Quantum-Chemical AM 1 Calculations for Hydride Addition Reaction of Methyldimethoxysilane to 1,3-Cyclohexadiene. Bull. Georgian National Acad. Sci.2007, 3, 297-300.
  38. Mukbaniani, O.; Tatrishvili, T.; Titvinidze, G. AM1 Calculations for Hydrosilylation Re¬a¬c¬tion ofMethyldimethoxysilane with Hexane-1. Bull. Georgian National Acad. Sci. 2006, 32, 109–114.
  39. Tatrishvili, T.; Titvinidze, G.; Mukbaniani, O.AM1 Calculations for Hydride Addition Rea¬c¬¬tion of Methyldimethoxysilane with Styrene.Georgia Chemical Jo¬ur¬nal2006, 6, 58–59.
  40. Mukbaniani, O.; Pirtskheliani, N.; Tatrishvili, T.; Patstasia, S.Hydrosi¬ly¬la¬ti¬onReactions of α,ω-bis(Trimethylsiloxy)methylhydridesiloxane to Allyloxytriethoxysilane. Georgia Chemical Journal2006, 6, 254–255.
  41. Janssen, J.J.A. Building with bamboo (2nd ed.); Intermediate Technology Publication Limited, London,1995.
  42. Amada, S.; Ichikawa, Y.; Munekata, T.; Nagase, Y.; Shimizu, K.Fiber Texture and Mechanical Graded Structure of Bamboo. Compos. B. Eng.1997, 28, 13–20.
  43. Mukbaniani, O.;Brostow, W.; Aneli, J.; Markarashvili, E. Tatrishvili, T.; Buzaladze, G.; Parulava, G. Sawdust Based Composites. Polym. Adv. Technol. 2020, 31, 2504–2511.
  44. Chang, H.-T.; Yeh, T.-F.; Hsu, F.-L.; Kuo-Huang, L.-L.; Lee, C.-M.; Huang, Y.-S.; Chang, S.-T. Profiling the Chemical Composition and Growth Strain of Giant Bamboo, (Dendrocalamusgiganteus Munro). Bioresource2015,10, 1260-1270.–1270
  45. Muraganatham, S.;Anbalagan, G.; Ramamurthy, N. FT-IR and Semeds Comparative Analysis of Medicinal Plants. EcliptaalbaHassk and EcliptaprostrateLinn. Rom J. Biophys. 2009, 19, 285–294.
  46. Mukbaniani,O.;Aneli,J.;Tatrishvili, T.;Markarashvili, E.;Londaridze, L.;Kvinikadze, N.;Kakalashvili, L. Wood Polymer Composite Based On A Styrene And Triethoxy(Vinylphenethyl)silane.Chem. Chem. Technol. 2023,17, 35–44.
  47. Mukbaniani, O.;Aneli, J.;Buzaladze, G.;Markarashvili, E.; Tatrishvili, T. Composites on the Basis of Straw with some Organic and Inorganic Binders. Oxid. Commun. 2016,39, 2763–2777.