Effects of Hydrophilic Silica Nanoparticles on Morphology and Mechanical Properties of a Typical Tyre Compound

: pp. 150–158
Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman
Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman
Department of Chemical Engineering, College of Engineering, Shahid Bahonar University of Kerman
Compound Development Manager
Golnaz Vegetable Oil Co.

This research aimed to study the effects of adding hydrophilic silica nanoparticles as nanofiller on tread properties of a typical tyre compound. In this respect, four compounds were prepared as a representative of the tread of the tyre. The amount of 0, 1, 3, and 5 phr (parts of filler per hundred parts of rubber) of nanofiller were added by melt mixing method. Physical and mechanical properties of compounds were measured. The structure and morphology of the fractured surface of the compounds were characterized using field emission scanning electron microscopy (Fe-SEM). The results of cure and mechanical analysis of the compound series showed that the sample containing 3 phr of nanofiller possesses better properties. This observation is due to higher interaction between nanofiller and polymer macromolecules that causes better dispersion of the nanoparticles in polymer matrix.

  1. Rajarao, R.; Farzana, R., Khanna R.; Sahajwalla, V. Synthesis of SiC/Si3N4 Nanocomposite by Using Automotive Waste Tyres as Resource. J. Ind. Eng. Chem. 2015, 29, 35-38. https://doi.org/10.1016/j.jiec.2015.04.006
  2. Tullo, A. Chemical Companies Hope Their Innovations Can Improve the Environmental Performance of Tires without Sacrificing Safety and Durability. Chem. Eng. News. 2009, 87, 10. https://doi.org/10.1021/cen-v087n046.p010
  3. Marković, G.; Radovanović, B.; Marinović-Cincović, M.; Budinski-Simendić, J. The Effect of Accelerators on Curing Characteristics and Properties of Natural Rubber/Chlorosulphonated Polyethylene Rubber Blend. Mater. Manuf. Process. 2009, 24, 1224-1228. https://doi.org/10.1080/10426910902967087
  4. Paul, D.; Robeson, L. Polymer Nanotechnology: Nanocomposites. Polymer. 2008, 49, 3187-3204. https://doi.org/10.1016/j.polymer.2008.04.017
  5. Chawla, V.; Prakash, S.; Sidhu B. State of the Art: Applications of Mechanically Alloyed Nanomaterials - A Review. Mater. Manuf. Process. 2007, 22, 469-473. https://doi.org/10.1080/10426910701235900
  6. Abdul Salim, Z.; Hassan, A.; Ismail, H. A Review on Hybrid Fillers in Rubber Composites. Polym. Plast. Technol. Eng. 2018, 57, 523-539. https://doi.org/10.1080/03602559.2017.1329432
  7. Bagheri, H.; Hashemipour, H.; Ghader, S. Population Balance Modeling: Application in Nanoparticle Formation Through Rapid Expansion of Supercritical Solution. Comput. Part. Mech. 2019, 6, 721-737. https://doi.org/10.1007/s40571-019-00257-w
  8. Bagheri, H.; Hashemipour, H.; Mirzaie, M. Investigation on Hydrodynamic and Formation of Nano Particle by RESS Process: The Numerical Study. J. Mol. Liq. 2019, 281, 490-505. https://doi.org/10.1016/j.molliq.2019.02.108
  9. Bagheri, H.; Mansoori, G.; Hashemipour, H. A Novel Approach to Predict Drugs Solubility in Supercritical Solvents for RESS Process Using Various Cubic Eos-Mixing Rule. J. Mol. Liq. 2018, 261, 174-188. https://doi.org/10.1016/j.molliq.2018.03.081
  10. Rubber Technologist's Handbook, Vol. 2; De, S.; Naskar, K.; White, J., Eds.; Smithers Rapra Technology: Shawbury, UK, 2009.
  11. Ahn, S.; Kim, S.; Kim, B. et al. Mechanical Properties of Silica Nanoparticle Reinforced Poly(ethylene2,6-naphthalate). Macromol. Res., 2004, 12, 293-302. https://doi.org/10.1007/BF03218403
  12. Ekengwu, I.; Utu, O.; Okafor, C. Nanotechnology in Automotive Industry: The Potential of Graphene. Iconic Res. Eng. J., 2019, 3, 31-37. https://irejournals.com/formatedpaper/1701322.pdf
  13. Vishvanathperumal, S.; Anand, G. Effect of Nanosilica and Crosslinking System on the Mechanical Properties and Swelling Resistance of EPDM/SBR Nanocomposites with and without TESPT. Silicon. 2020. https://doi.org/10.1007/s12633-020-00792-9
  14. White, J.; Kim, K. Thermoplastic and Rubber Compounds. Technology and Physical Chemistry; Hanser Publications: Ohio, 2012.
  15. Bhattacharya, M.; Bhowmick A. Synergy in Carbon Black-Filled Natural Rubber Nanocomposites. Part I: Mechanical, Dynamic Mechanical Properties, and Morphology. J. Mater. Sci. 2010, 45, 6126-6138. https://doi.org/10.1007/s10853-010-4699-6
  16. Ten Brinke, A. Silica Reinforced Tyre Rubbers. PhD thesis, University of Twente, the Netherlands, 2002.
  17. Kumbul, A.; Gokturk, E.; Sahmetlioglu, E. Synthesis, Characterization, Thermal Stability and Electrochemical Properties of Ortho-Imine-Functionalized Oligophenol via Enzymatic Oxidative Polycondensation. J. Polym. Res. 2016, 23, 52. https://doi.org/10.1007/s10965-016-0953-1
  18. Pal, K.; Rajasekar, R.; Kang, D. et al. Effect of Fillers on Natural Rubber/High Styrene Rubber Blends with Nano Silica: Morphology and Wear. Mater. Des. 2010, 31, 677-686. https://doi.org/10.1016/j.matdes.2009.08.014
  19. Kaewsakul, W. Silica-Reinforced Natural Rubber for Low Rolling Resistance, Energy-Saving Tires: Aspects of Mixing, Formulation and Compatibilization. PhD thesis, University of Twente, the Netherlands, 2013.
  20. Xia, L.; Song, J.; Wang, H.; Kan, Z. Silica Nanoparticles Reinforced Natural Rubber Latex Composites: The Effects of Silica Dimension and Polydispersity on Performance. J. Appl. Polym. Sci., 2019, 136, 47449. https://doi.org/10.1002/app.47449
  21. Tancharernrat, T.; Rempel, G.; Prasassarakich, P. Preparation of Styrene Butadiene Copolymer-Silica Nanocomposites via Differential Microemulsion Polymerization and NR/SBR-SiO2 Membranes for Pervaporation of Water-Ethanol Mixtures. Chem. Eng. J. 2014, 258, 290-300. https://doi.org/10.1016/j.cej.2014.05.151
  22. Rubber Nanocomposites: Preparation, Properties, and Applications; Thomas, S., Stephen, R., Eds.; John Wiley & Sons, 2010. https://doi.org/10.1002/9780470823477
  23. Park, S.; Jin, S.; Kaang, S. Influence of Thermal Treatment of Nano-Scaled Silica on Interfacial Adhesion Properties of the Silica/Rubber Compounding. Mater. Sci. Eng. A. 2005, 398, 137-141. https://doi.org/10.1016/j.msea.2005.03.012
  24. Chen, Y.; Peng, Z.; Kong, L. et al. Natural Rubber Nanocomposite Reinforced with Nano Silica. Polym. Eng. Sci. 2008, 48, 1674-1677. https://doi.org/10.1002/pen.20997
  25. Mathew, L.; Narayanankutty, S. Nanosilica as Dry Bonding System Component and as Reinforcement in Short Nylon-6 Fiber/Natural Rubber Composite. J. Appl. Polym. Sci. 2009, 112, 2203-2212. https://doi.org/10.1002/app.29718
  26. Meera, A.; Said, S.; Grohens, Y. et al. Tensile Stress Relaxation Studies of TiO2 and Nanosilica Filled Natural Rubber Composites. Ind. Eng. Chem. Res., 2009, 48, 3410-3416. https://doi.org/10.1021/ie801494s
  27. Chayan, D.; Kapgate Bharat, P. Preparation and Studies of Nitrile Rubber Nanocomposites with Silane Modified Silica Nanoparticles. Res. J. Recent Sci. 2012, 1, 357-360. http://www.isca.in/rjrs/archive/v1/iISC-2011/62.ISCA-ISC-2011-11MatS-05.pdf
  28. Yusof, N.; Noguchi, K.; Fukuhara, L. et al. Preparation and Properties of Natural Rubber with Filler Nanomatrix Structure. Colloid Polym. Sci. 2015, 293, 2249-2256. https://doi.org/10.1007/s00396-015-3615-7
  29. Ahmed, J.; Al-Maamori, M.; Ali, H. Effect of Nano Silica on the Mechanical Properties of Styrene-Butadiene Rubber (SBR) Composite. Int. J. Mater. Sci. Appl., 2015, 4, 15-20. https://doi.org/10.11648/j.ijmsa.s.2015040201.14
  30. Advanced Rubber Composites; Heinrich, G., Ed.; Springer Science & Business Media, 2011. https://doi.org/10.1007/978-3-642-19504-4
  31. Dileep, P.; Narayanankutty, S. Styrenated Phenol Modified Nanosilica for Improved Thermo-Oxidative and Mechanical Properties of Natural Rubber. Polym. Test., 2020, 82, 106302. https://doi.org/10.1016/j.polymertesting.2019.106302
  32. Dileep, P.; Narayanankutty, S. A Novel Method for Preparation of Nanosilica from Bamboo Leaves and Its Green Modification as a Multi-Functional Additive in Styrene Butadiene Rubber. Mater. Today Commun. 2020, 24, 100957. https://doi.org/10.1016/j.mtcomm.2020.100957
  33. Hawleyown, S. Physical Testing of Rubber-Third Edition: By R. P. Brown. Chapman and Hall, London, 1996. 352 pp. ISBN 0-412-60890-1. Polym. Test. 1996, 5, 501-502. https://doi.org/10.1016/0142-9418(96)00024-4
  34. Ramarad, S.; Khalid, M.; Ratnam, C. et al. Waste Tire Rubber in Polymer Blends: a Review on the Evolution, Properties and Future. Prog. Mater. Sci. 2015, 72, 100-140. https://doi.org/10.1016/j.pmatsci.2015.02.004