Alumina-based composites reinforced with titanium were manufactured by powder techniques. Characterizations indicate that titanium content affects densification which in turn causes positive effects on hardness and toughness. Microstructure presents grains of irregular shape and small sizes. Electrochemical impedance spectroscopy indicates that additions of titanium on Al2O3 enhance its corrosion resistance.
- Daguano J., Santos C., Souza R. et al.: Int. J. Refract. Met. H., 2007, 25, 374. https://doi.org/10.1016/j.ijrmhm.2006.12.005
- Wu Y., Zhang Y., Huang X., Guo J.: J. Eur. Ceram. Soc., 2001, 21, 581. https://doi.org/10.1016/S0955-2219(00)00245-4
- Wang L., Shi J., Hua Z. et al.: Mater. Lett., 2001, 50, 179. https://doi.org/10.1016/S0167-577X(01)00221-X
- Miyazaki H., Yoshizawa Y., Hirao K.: Mater. Lett., 2004, 58, 1410. https://doi.org/10.1016/j.matlet.2003.09.037
- Liu C., J., Sun J., Zhang X.: Ceram. Int., 2007, 33, 1319. https://doi.org/10.1016/j.ceramint.2006.04.014
- Liu C., Zhang J., Sun J. et al.: Ceram. Int., 2007, 33, 1149. https://doi.org/10.1016/j.ceramint.2006.03.018
- Sekino T., Nakajima T., Niihara K.: Mater. Lett., 1996, 29, 165. https://doi.org/10.1016/S0167-577X(96)00136-X
- Konopka K., Maj M., Kurzydlowski K.: Mater. Charact., 2003, 51, 335. https://doi.org/10.1016/j.matchar.2004.02.002
- Chou W., Tuan W.: J. Eur. Ceram. Soc, 1995, 15, 291. https://doi.org/10.1016/0955-2219(95)90351-I
- Wu C., Wang Z., Li Q. et al.: J. Alloys Compd., 2014, 617, 729. https://doi.org/10.1016/j.jallcom.2014.08.007
- Mas-Guindal M., Benko E., Rodriguez M.: J. Alloys Compd., 2008, 454, 352. https://doi.org/10.1016/j.jallcom.2006.12.105
- Ji Y., Yeomans J.: J. Eur. Ceram. Soc., 2002, 22, 1927. https://doi.org/10.1016/S0955-2219(01)00528-3
- Lalande J., Scheppokat S., Janssen R., Claussen N.: J. Eur. Ceram. Soc, 2002, 22, 2165. https://doi.org/10.1016/S0955-2219(02)00031-6
- Yaoa X., Huanga Z., Chena L. et al.: Mater. Lett., 2005, 59, 2314. https://doi.org/10.1016/j.matlet.2005.03.012
- Guichard J., Tillement O., Mocellin A: J. Eur. Ceram. Soc., 1998, 18, 1143. https://doi.org/10.1016/S0955-2219(98)00009-0
- De Portu G., Guicciardi S., Melandri C., Monteverde F.: Wear, 2007, 262, 1346. https://doi.org/10.1016/j.wear.2007.01.010
- Yoshida K., Mishina H., Sasaki S. et al.: J. Jpn. I. Met., 2005, 69, 793. https://doi.org/10.2320/jinstmet.69.793
- Mishina H., Inumaru Y., Kaitoku K.: Mater. Sci. Eng. A, 2008, 475, 141. https://doi.org/10.1016/j.msea.2007.05.004
- Oshkour A., Pramanik S., Shirazi S. et al.: Sci. World J., 2014, 2014, 9. https://doi.org/10.1155/2014/616804
- Cook R., Zioupos P.: J. Biomech., 2009, 42, 2054. https://doi.org/10.1016/j.jbiomech.2009.06.001
- Norman T., Vashisth D., Burr D.: J. Biomech., 1995, 28, 309. https://doi.org/10.1016/0021-9290(94)00069-G
- ASTM B962-17: Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes' Principle, Pensylvania, USA, 2017.
- ASTM C1421-18: Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature, Pensylvania, USA, 2018.
- ASTM C1327-15: Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics, Pensylvania, USA, 2015.
- ASTM E1876-15: Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration, Pensylvania, USA, 2015.
- Kutz M.: Standard Handbook of Biomedical Engineering and Design, McGraw-Hill, New York 2013.
- Polo-Corrales L., Latorre-Esteves M., Ramirez-Vick J.: J. Nanosci. Nanotechnol., 2014, 14, 15. https://doi.org/10.1166/jnn.2014.9127
- Miyoshi T., Sagawa N., Sassa T.: Trans. Jpn. Soc. Mech. Eng. A, 1985, 51, 2489. https://doi.org/10.1299/kikaia.51.2489