Adsorption of Zinc and Iron Ions from Aqueous Solution Using Waste Material as Adsorbent

Reducing or eliminating ions of toxic heavy elements such as iron and zinc from aqueous solutions has been adopted in this research. The batch process is used to remove metal ions using a cheap adsorbent material that is called hawthorn nucleus. In addition, the influences of contact time, pH, metal ions concentration, and adsorbent dose on the removal percentage have been studied.


The article is devoted to studying the process of adsorption of oil products using multivariate cluster analysis methods. The study solves the problem of environmental pollution with petroleum substances and the search for effective cleaning methods. The work aims to study the prospects of using synthetic zeolites to effectively purify industrial wastewater from oil products.

Use of pyrocarbon obtained in the process of pyrolysis of rubber waste for absorption of oil and Petroleum products

The paper describes the results of studying the composition and properties of pyrocarbon obtained during the pyrolysis of rubber waste. The ability of pyrocarbon to absorb oil and oil products was determined using four developed methods. It has been established that pyrocarbon can find practical use as an adsorbent for the collection and localization of spills of oil and oil products on solid and water surfaces.


This article is devoted to the study of the carbon dioxide adsorption process. The relevance of using carbon nanotubes for adsorbing carbon dioxide from industrial emissions is that carbon nanotubes have a high surface area and can effectively interact with carbon dioxide molecules. In addition, they have high mechanical strength and chemical resistance, which makes them attractive for industrial use. Carbon nanotubes have the potential to reduce carbon dioxide emissions and reduce the negative impact on the environment.

Adsorption Removal of Eriochrome Black T (EBT) and Rose Bengal (RB) from Aqueous Solutions Using Bio-Sorbents Combination

Adsorption of eriochrome black T (EBT) and rose bengal (RB) mixture from aqueous solutions was investigated using a mixture of low-cost biosorbents – 50 % of raw state potato peels and 50 % of raw state eggshell (M 50%). The surface charge distribution was determined by acid-base titration and the point of zero charge of the M 50% was found to be 8.5. The adsorbent materials were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. It was confirmed that M 50% was mainly composed of calcite and cellulose.

Microcrystalline Cellulose from Groundnut Shell as Potential Adsorbent of Crystal Violet and Methylene Blue. Kinetics, Isotherms and Thermodynamic Studies

The isolation of microcrystalline cellulose from a groundnut shell is reported. Adsorption experiments were carried out for the removal of cationic crystal violet and methylene blue and it follows Langmuir model. Positive enthalpy and negative free energy changes have shown endothermic and favorable processes. The results reflect good adsorption process.

Improving the Method for Producing Adsorbents from Agro-Industrial Wastes

A multi-stage method for producing an absorbent with increased absorption capacity based on agro-industrial wastes has been proposed. The method includes treatment of raw materials with sulfuric acid, mechanochemical modification, electrostatic separation, and cavitation stage. The expediency of the proposed adsorbent usage in the process of purification of contaminated water from fats, phenols, petroleum products, and heavy metal ions has been proved. The complex application of adsorbents (absorption of gaseous pollutants and wastewater purification) has been tested.

Intensification of Drying Process During Activated Carbon Regenerationc

Heat-mass exchange processes during regenerated activated carbon drying was studied to determine the minimum height of heat-mass exchange zone and termination time of hot heating agent supply based on criterion equations and heat balance calculations. The heating agent temperature changes with time and the adsorbent bed height, as well as the time of moisture content change and drying rate were studied experimentally. Minimum height of a wet material layer ensuring rational use of the heating agent was determined.

Decontamination of radioactive liquid systems by modified clay minerals

The process mechanism for sorption of strontium and cesium from liquid radioactive waste using modified bentonites from Yaziv sulfur deposit was investigated. The technique for predicting the intensity of the sorption process based on the comparison of experimental and calculated values of mass transfer coefficients was proposed. It was detected that the process of sorption extraction of strontium and cesium from liquid medium using modified clay minerals may be best described by a three-parameter model of the adsorption isotherms.

Magneto susceptible adsorbents obtained by thermochemical activation of hydrolytic lignin with Iron(III) Hydroxide

Magnetosusceptible adsorbents (MSA) were obtained by method of thermochemical activation of lignin and precipitated on its surface iron(III) hydroxide. Dependence of magnetic susceptibility and porous structure parameters were investigated. Optimal conditions of synthesis for output parameters in determined interval of factors variation were found. Structural characteristics of MSA were compared with industrial activated carbon BAU-A and OU-B. It was demonstrated that pores volume of MSA does not inferior to values for the activated carbons.