Frequency spectrum of surface plasmon-polariton waves: influence of Coulomb correlations

2020;
: pp. 140–145
https://doi.org/10.23939/mmc2020.01.140
Received: February 15, 2020
Revised: April 17, 2020
Accepted: April 20, 2020

Mathematical Modeling and Computing, Vol. 7, No. 1, pp. 140–145 (2020)

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

The model that describes the influence of Coulomb interaction between electrons (Coulomb correlations) on a frequency spectrum of plasmon-polariton waves in electroneutral structures dielectric/metal/dielectric is investigated.  It is shown that for atomically thin metal films (ATMF), such correlations affects both the quantum-dimensional behavior of the frequency spectrum as a function of the thickness of the metal film and
significantly improves the correlation of theoretical calculations and experiment.

  1. Maier S. A.  Plasmonics: Fundamentals and Application.  Springer-Verlag (2007).
  2. Abd El-Fattah Z. M., Mkhitaryan V., Brede J., Fern\'{a}ndez L., Li Ch., Guo Q., Ghosh A., Echarri A. R., Naveh D., Xia F., Ortega J. E., de Abajo F. J. G.  Plasmonics in Atomically-Thin Crystalline Silver Films.  ACS Nano. 13 (7), 7771–7779 (2019).
  3. Echarri A. R., Cox J. D., de Abajo F. J. G.  Quantum Effects in the Acoustic Plasmons of Atomically-Thin Heterostructures.  Optica. 6 (5), 798–798 (2019).
  4. Ando T., Fowler A. B., Stern F.  Electronic properties of two-dimensional systems.  Rev. Mod. Phys. 54 (2), 437–672 (1982).
  5. Taghizadeh A., Pedersen T. G.  Plasmons in ultra-thin gold slabs with quantum spill-qut: Fourier modal method, perturbative approach, and analytical model.  Optics Express. 27 (25), 36941–36952 (2019).
  6. Skjølstrup E. J. H., Søndergaard T., Pedersen T. G.  Quantum spill-out in few-nanometer metal gaps: Effect on gap plasmons and reflectance from ultrasharp groove arrays.  Phys. Rev. B. 97 (11), 115429 (2018).
  7. Skjølstrup E. J. H., Søndergaard T., Pedersen T. G.  Quantum spill-out in nanometer-thin gold slabs: Effect on the plasmon mode index and the plasmonic absorption.  Phys. Rev. B. 99 (15), 155427 (2019).
  8. Kostrobij P. P., Markovych B. M.  The chemical potential and the work function of a metal film on a dielectric substrate.  Philosophical Magazine Letters. 99 (1), 12–20 (2019).
  9. Hohenberg P. Kohn W.  Inhomogeneous Electron Gas.  Phys. Rev. B. 136 (3B), B864–B871 (1964).
  10. Kostrobij P. P., Markovych B. M.  Effect of Coulomb interaction on chemical potential of metal film.  Philosophical Magazine. 98 (21), 1991–2002 (2018).
  11. Vavrukh M. V., Slobodyan S. B.  Electron-plasmon model in the electron liquid theory.  Condensed Matter Physics. 8 (3), 453–472 (2005).
  12. Kostrobij P. P., Markovych B. M., Polovyi V. Y.  Influence of the electroneutrality of a metal layer on the plasmon spectrum in dielectric-metal-dielectric structures.  Mathematical Modeling and Computing. 6 (2), 297–303 (2019).
  13. Jackson J. D.  Classical Electrodynamics.  John Wiley & Sons (2007).
  14. Vakarchuk I. O.  Kvantova mekhanika.  Lviv, LNU im. I. Franka (2007), (in Ukrainian).
  15. Ashcroft N. W, Mermin N. D.  Solid State Physics.  Cornell University. Harcourt (1976).
  16. Kurbatsky V. P.  Dielectric tensor of low-dimensional metal systems.  Electronic Properties of Solid. 125 (1), 148–158 (2017).
  17. Korotun A. V.  Size oscillations of the work function of a metal film on a dielectric substrate.  Phys. Solid State. 57, 391–394 (2015).
  18. Pogosov V. V., Babich A. V., Vakula P. V.  On the Influence of the Band Structure of Insulators and Image Forces on the Spectral Characteristics of Metal–Insulator Film Systems.  Phys. Solid State. 55, 2120–2123 (2013).