Influence of the electroneutrality of a metal layer on the plasmon spectrum in dielectric-metal-dielectric structures

2019;
: pp. 297–303
https://doi.org/10.23939/mmc2019.02.297
Received: May 20, 2019
Revised: November 11, 2019
Accepted: November 15, 2019

Mathematical Modeling and Computing, Vol. 6, No. 2, pp. 297–303 (2019)

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

In this paper, we propose a model that allows us to investigate the influence of quantum size effects and the electroneutrality condition on the spectrum of SPPs waves as a function of metal thickness in heterogeneous dielectric/metal/dielectric structures.  It is shown that for ultrathin metal layers, the spectrum of plasmon waves has oscillatory behavior in the domain of small wave vectors  (k~0.05-0.2 1/nm).  The amplitude of oscillations depends on the conditions of electroneutrality for the dielectric/metal/dielectric structure.

  1. Kurbatsky V. P.  Dielectric tensor of low-dimensional metal systems.  J. Exp. Theor. Phys. 125 (1), 148--158 (2017).
  2. Kostrobij P. P., Markovych B. M.  Effect of Coulomb interaction on chemical potential of metal film.  Philosophical Magazine. 98 (21), 1991--2002 (2018).
  3. Korotun A. V.  Size Oscillations of the Work Function of a Metal Film on a Dielectric Substrate.  Phys. Solid State. 57 (2), 391--394 (2015).
  4. Kostrobij P. P., Markovych B. M.  The chemical potential and the work function of a metal film on a dielectric substrate.  Philosophical Magazine Letters. 99 (1), 12--20 (2019).
  5. van Himbergen J. E., Silbey R.  Exact solution of metal surface properties in square barrier and linear one-electron potential models.  Phys. Rev. B. 18 (6), 2674--2682 (1978).
  6. Abd El-Fattah Z. M., Mkhitaryan V., Brede J., Fernández L., Li C., Guo Q., Ghosh A., Echarri A. R., Naveh D., Xia F., Ortega J. E., de Abajo F. J. G.  Plasmonics in Atomically-Thin Crystalline Silver Films.  ACS Nano. 13 (7), 7771--7779 (2019).
  7. Echarri A. R., Cox J. D., de Abajo F. J. G.  Quantum Effects in the Acoustic Plasmons of Atomically-Thin Heterostructures.  Optica. 6 (5), 630--641 (2019).
  8. Kostrobij P. P., Polovyi V. Y.  Surface plasmon polaritons in dielectric/metal/dielectric structures: metal layer thickness influence.  Mathematical Modeling and Computing. 6 (1), 109--115 (2019).
  9. Pogosov V. V., Babich A. V., Vakula P. V.  On the Influence of the Band Structure of Insulators and Image Forces on the Spectral Characteristics of Metal–Insulator Film Systems.  Phys. Solid State. 55 (10), 2120--2123 (2013).
  10. Maier S. A.  Plasmonics: Fundamentals and Application. Springer, New York (2007).
  11. Jackson J. D.  Classical Electrodynamics.  John Wiley & Sons (2007).
  12. Ashcroft N. W, Mermin N. D.  Solid State Physics.  Harcourt College Publishers (1976).
  13. Landau L. D., Bell J. S., Kearsley M. J, Pitaevskii L. P, Lifshitz E. M., Sykes J. B.  Electrodynamics of Continuous Media.  Elsevier, Vol. 8 (1984).
  14. Landau L. D., Lifshitz E. M.  Statistical Physics. Elsevier, Vol. 5 (2013).
  15. Vakarchuk I. O.  Kvantova mekhanika.  Lviv, LNU im. I. Franka (2007), (in Ukrainian).