машинне навчання

PREDICTION OF THE OCCURRENCE OF STROKE BASED ON MACHINE LEARNING MODELS

The research conducted in the medical domain addressed a topic of significant importance, steadily growing in relevance each year. The study focused on predicting the onset of strokes, a condition posing a grave risk to individuals' health and lives. Utilizing a highly imbalanced dataset posed a challenge in developing machine learning models capable of effectively predicting stroke occurrences. Among the models examined, the Random Forest model demonstrated the most promising performance, achieving precision, recall, and F1-score metrics of 90%.

METHODS OF MACHINE LEARNING IN MODERN METROLOGY

In the modern world of scientific and technological progress, the requirements for the accuracy and reliability of measurements are becoming increasingly stringent. The rapid development of machine learning (ML) methods opens up perspectives for improving metrological processes and enhancing the quality of measurements. This article explores the potential application of ML methods in metrology, outlining the main types of ML models in automatic instrument calibration, analysis, and prediction of data.

Identification of Birds' Voices Using Convolutional Neural Networks Based on Stft and Mel Spectrogram

Threats to the climate and global changes in ecological processes remain an urgent problem throughout the world. Therefore, it is important to constantly monitor these changes, in particular, using non-standard approaches. This task can be implemented on the basis of research on bird migration information. One of the effective methods of studying bird migration is the auditory method, which needs improvement.

Intelligent System for Detecting Plagiarism in Technical Texts

The authors of the article developed a scientific reasoning, designed, and developed an intelligent system for detecting plagiarism in technical texts. The work defines the problem of plagiarism in the modern world and its relevance and analyzes the latest research and publications devoted to the latest methods of using intelligent information technologies to detect plagiarism.

Machine Learning Methods to Increase the Energy Efficiency of Buildings

Predicting a building’s energy consumption plays an important role as it can help assess its energy efficiency, identify and diagnose energy system faults, and reduce costs and improve climate impact. An analysis of current research in the field of ensuring the energy efficiency of buildings, in particular, their energy assessment, considering the types of models under consideration, was carried out.

Data Set Formation Method for Checking the Quality of Learning Language Models of the Transitive Relation in the Logical Conclusion Problem Context

A method for data set formation has been developed to verify the ability of pre-trained models to learn transitivity dependencies. The generated data set was used to test the quality of learning the transitivity dependencies in the task of natural language inference (NLI). Testing of a data set with a size of 10,000 samples (MultiNLI) used to test the RoBerta model.

Information System for Ukrainian Text Voiceover Based on Nlp and Machine Learning Methods

During the research, an information system for voicing Ukrainian-language text was developed based on NLP and machine learning methods. The created information system is implemented in the form of a desktop application, which allows the process of voicing the Ukrainian-language text. The created system included all stages of software development: the design process, the implementation process, and the testing process.

Information technology for the analysis of mobile operator sales outlets based on clustering methods

This research presents the development and implementation of information technology for monitoring and analyzing segments of a mobile operator's stores using clustering methods. The study addresses a pertinent issue in marketing and business optimization, namely the enhancement of strategies for the network of mobile communication stores.

The modern state of approaches to monitoring the technical condition of wind turbine blades us-ing information technologies

Nowadays wind energy is one of the most important and promising sources of environmentally clean renewable energy. Wind turbine blades are among the most expensive components. Depending on the size, their manufacturing costs range between 10 % and 20 % of total manufacturing costs. Moreover, the size of blades has increased in recent years, leading to greater efficiency and energy production, but presenting higher failure probability.

Specialized software platform for analysis of information in data stores

This article presents the design, development, and evaluation of a specialized program for analyzing, developing aggregations of this data, and visualizing large volumes of data. The main goal of this program is to simplify data processing, speed up their analysis, and make it easier to write code for problems with large amounts of data. To achieve this goal, machine learning is used, as well as two repositories.