Recognition of Inclusion Characteristics Using Neural Network Methods in Stationary Process Modeling

2025;
: pp. 75 - 92
1
Lviv Polytechnic National University, Software Development Department, Lviv, Ukraine
2
Lviv Polytechnic National University, Software Engineering Department

Detection and identification of inclusions in the modeling of stationary processes is a crucial task in many technical fields, including materials science, electronics, and non-destructive testing. The presence of inclusions can affect the mechanical, thermal, and electrical properties of a material, making the accurate determination of their geometric and physical characteristics essential. The use of modern numerical methods and deep learning techniques opens new opportunities for improving the efficiency and accuracy of prediction results.
This paper explores the application of the indirect near-boundary element method for solving direct problems in potential theory and various types of neural networks for solving inverse problems, i.e., recognizing the specified characteristics of inclusions (their location, size, and conductivity coefficient). A series of computational experiments were conducted to solve the direct problem, allowing the generation of datasets for training and testing models utilizing convolutional, recurrent, and deep neural networks.
To enhance data analysis efficiency, the application of data normalization techniques was tested. A novel approach to feature extraction for predicting the physical characteristic of inclusions (conductivity coefficient) was proposed, significantly improving the accuracy of its computation. After extensive testing, several neural network architectures were selected for determining the geometric and physical characteristics, and neural network ensembles were constructed to integrate the best aspects of each model. The results of ensemble model testing demonstrated higher accuracy in determining the conductivity coefficient and geometric characteristics of inclusions compared to individual models.
The obtained results may contribute to the advancement of non-destructive testing methods and the detection of defects or inclusions. Future research will focus on developing an approach for identifying the characteristics of multiple inclusions and creating more diverse datasets.

  1. Al-Athel, K. S., Alhasan, M. M., Alomari, A. S., & Arif, A. F. M. (2022). Damage characterization of embedded defects in composites using a hybrid thermography, computational, and artificial neural networks approach. Heliyon, 8(8), e10063. https://doi.org/10.1016/j.heliyon.2022.e10063
  2. Alshoaibi, A. M., & Fageehi, Y. A. (2024). Advances in Finite Element Modeling of Fatigue Crack Propagation.Applied Sciences, 14(20), 9297. https://doi.org/10.3390/app14209297
  3. Dubey, A. K., & Jain, V. (2019). Comparative Study of Convolution Neural Network’s Relu and Leaky-Relu Activation Functions. В S. Mishra, Y. R. Sood, & A. Tomar (Ред.), Applications of Computing, Automation and Wireless Systems in Electrical Engineering (с. 873–880). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-6772-4_76
  4. Guan, X., & Burton, H. (2022). Bias-variance tradeoff in machine learning: Theoretical formulation and implications          to          structural          engineering          applications.          Structures,          46,          17–30.https://doi.org/10.1016/j.istruc.2022.10.004
  5. Han, A. L., Gan, B. S., & Setiawan, Y. (2014). The Influence of Single Inclusions to the Crack Initiation, Propagation and Compression Strength of Mortar. Procedia Engineering, 95, 376–385. https://doi.org/10.1016/j.proeng.2014.12.196
  6. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition (Версія 1). Версія1. arXiv. https://doi.org/10.48550/ARXIV.1512.03385
  7. Hosna, A., Merry, E., Gyalmo, J., Alom, Z., Aung, Z., & Azim, M. A. (2022). Transfer learning: A friendly introduction. Journal of Big Data, 9(1), 102. https://doi.org/10.1186/s40537-022-00652-w
  8. Hussain, M. (2024). YOLOv5, YOLOv8 and YOLOv10: The Go-To Detectors for Real-time Vision (Версія 1).Версія 1. arXiv. https://doi.org/10.48550/ARXIV.2407.02988
  9. Jaddi, S., Coulombier, M., Raskin, J.-P., & Pardoen, T. (2019). Crack on a chip test method for thin freestanding films. Journal of the Mechanics and Physics of Solids, 123, 267–291. https://doi.org/10.1016/j.jmps.2018.10.005
  10. Jo, J.-M. (2019). Effectiveness of Normalization Pre-Processing of Big Data to the Machine Learning Performance. The Journal of the Korea institute of electronic communication sciences, 14(3), 547–552. https://doi.org/10.13067/JKIECS.2019.14.3.547
  11. Khodadad, M., & Ardakani, M. D. (2008). Inclusion Identification by Inverse Application of Boundary Element Method, Genetic Algorithm and Conjugate Gradient Method. American Journal of Applied Sciences, 5(9), 1158– 1166.    https://doi.org/10.3844/ajassp.2008.1158.1166
  12. Kurnyta-Mazurek, P., Wrąbel, R., & Kurnyta, A. (2025). Computer-Aided Supporting Models of Customized Crack Propagation Sensors for Analysis and Prototyping. Sensors, 25(2), 566. https://doi.org/10.3390/s25020566
  13. Lema, D. G., Pedrayes, O. D., Usamentiaga, R., Venegas, P., & Garcia, D. F. (2022). Automated Detection of Subsurface Defects Using Active Thermography and Deep Learning Object Detectors. IEEE Transactions on Instrumentation and Measurement, 71, 1–13. https://doi.org/10.1109/TIM.2022.3169484
  14. Montesinos López, O. A., Montesinos López, A., & Crossa, J. (2022). Fundamentals of Artificial Neural Networks and Deep Learning. В O. A. Montesinos López, A. Montesinos López, & J. Crossa, Multivariate Statistical Machine Learning Methods for Genomic Prediction (с. 379–425). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-89010-0_10
  15. Müller, D., Netzelmann, U., & Valeske, B. (2022). Defect shape detection and defect reconstruction in active thermography by means of two-dimensional convolutional neural network as well as spatiotemporal convolutional LSTM        network.        Quantitative        InfraRed        Thermography        Journal,        19(2),        126–144.https://doi.org/10.1080/17686733.2020.1810883
  16. Oswald-Tranta, B., Lopez De Uralde Olavera, P., Gorostegui-Colinas, E., & Westphal, P. (2023). Convolutional neural network for automated surface crack detection in inductive thermography. В N. P. Avdelidis (Ред.), Thermosense: Thermal Infrared Applications XLV (с. 16). Orlando, United States: SPIE. https://doi.org/10.1117/12.2663485
  17. Patra, R., & Dutta, P. K. (2013, Березень 6). Improved DOT reconstruction by estimating the inclusion location using artificial neural network (R. M. Nishikawa & B. R. Whiting, Ред.). Lake Buena Vista (Orlando Area), Florida, USA. https://doi.org/10.1117/12.2007905
  18. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks (Версія 3). Версія 3. arXiv. https://doi.org/10.48550/ARXIV.1506.01497
  19. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation (Версія 1). Версія 1. arXiv. https://doi.org/10.48550/ARXIV.1505.04597
  20. Tavares, L. D., Saldanha, R. R., & Vieira, D. A. G. (2015). Extreme learning machine with parallel layer perceptrons. Neurocomputing, 166, 164–171. https://doi.org/10.1016/j.neucom.2015.04.018
  21. Travassos, Xisto L., Avila, S. L., & Ida, N. (2021). Artificial Neural Networks and Machine Learning techniques applied to Ground Penetrating Radar: A review. Applied Computing and Informatics, 17(2), 296–308. https://doi.org/10.1016/j.aci.2018.10.001
  22. Travassos, X.L., Vieira, D. A. G., Ida, N., Vollaire, C., & Nicolas, A. (2008). Characterization of Inclusions in a Nonhomogeneous GPR Problem by Artificial Neural Networks. IEEE Transactions on Magnetics, 44(6), 1630– 1633.    https://doi.org/10.1109/TMAG.2007.915332
  23. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin, I. (2017). Attention Is All You Need. https://doi.org/10.48550/ARXIV.1706.03762
  24. Weitz, S., Clausner, A., & Zschech, E. (2024). Microcracking in On-Chip Interconnect Stacks: FEM Simulation and Concept for Fatigue Test. Journal of Electronic Materials, 53(8), 4401–4409. https://doi.org/10.1007/s11664- 024-11091-z
  25. Yang, J., Wang, W., Lin, G., Li, Q., Sun, Y., & Sun, Y. (2019). Infrared Thermal Imaging-Based Crack Detection Using Deep Learning. IEEE Access, 7, 182060–182077. https://doi.org/10.1109/ACCESS.2019.2958264
  26. Yin, W., Yang, Z., & Meng, P. (2023). Solving Inverse Scattering Problem with a Crack in Inhomogeneous Medium Based on a Convolutional Neural Network. Symmetry, 15(1), 119. https://doi.org/10.3390/sym15010119
  27. Yuan, C. C. A., & Lee, C.-C. (2020). Solder Joint Reliability Modeling by Sequential Artificial Neural Network for Glass Wafer Level Chip Scale Package. IEEE Access, 8, 143494–143501. https://doi.org/10.1109/ACCESS.2020.3014156
  28. Zhao, L., He, Z., Wang, Z., Su, L., & Lu, X. (2020). Simulation and Experimental Investigation on Active Thermography Test of the Solder Balls. IEEE Transactions on Industrial Informatics, 16(3), 1617–1624. https://doi.org/10.1109/TII.2019.2945583
  29. Zhao, X., Zhao, Y., Hu, S., Wang, H., Zhang, Y., & Ming, W. (2023). Progress in Active Infrared Imaging for Defect Detection in the Renewable and Electronic Industries. Sensors, 23(21), 8780. https://doi.org/10.3390/s23218780
  30. Zhuravchak, L., & Zabrodska, N. (2024). Algorithm for determining inclusion parameters in solving inverse problems of geoelectrical exploration using the profiling method. Geodynamics, 1(36)2024(1(36)), 98–107. https://doi.org/10.23939/jgd2024.01.098