Mathematical modeling of impurity diffusion process under given statistics of a point mass sources system. II

2024;
: pp. 631–641
https://doi.org/10.23939/mmc2024.03.631
Received: February 01, 2024
Revised: July 03, 2024
Accepted: August 20, 2024

Pukach P. Y., Chernukha Y. A.  Mathematical modeling of impurity diffusion process under given statistics of a point mass sources system. II.  Mathematical Modeling and Computing. Vol. 11, No. 3, pp. 631–641 (2024)

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University

Modeling of the impurity diffusion process in a layer under the action of a system of random point sources is carried out.  Mass sources of different power are uniformly distributed in a certain internal interval, that may also coincide with the entire region of the layer.  The statistics of random sources is given.  The solution of the initial-boundary value problem is found as the sum of the homogeneous problem solution and the convolution of the Green's function with the system of the random point sources.  Averaging of the solution is performed on the internal subinterval and in the entire body region.  The formulas for the variance, correlation function of the concentration field and coefficient of correlation are expressed in terms of the second moment of random mass sources.  Software modules are developed for simulating the behavior of the averaged concentration, variance and correlation function.  Their numerical analysis also is performed.  General properties of the considered function are determined depending on the problem parameters.

  1. Zhou T., Yongbo P.  Adaptive Bayesian quadrature based statistical moments estimation for structural reliability analysis.  Reliability Engineering & System Safety.  198, 106902 (2020).
  2. Nieto-Barajas L. E.  A class of dependent Dirichlet processes via latent multinomial processes.  A Journal of Theoretical and Applied Statistics.  55 (5), 1169–1179 (2021).
  3. Lin G. D., Dou X.  An identity for two integral transforms applied to the uniqueness of a distribution via its Laplace–Stieltjes transform.  A Journal of Theoretical and Applied Statistics.  55 (2), 367–385 (2021).
  4. Montgomery D. C., Runger G. C.  Applied Statistics and Probability for Engineers.  John Wiley & Sons (2010).
  5. Bourgeat A., Piatnitski A. L.  Averaging of a singular random source term in a diffusion convection equation.  SIAM Journal on Mathematical Analysis.  42 (6), 2626–2651 (2010).
  6. Bourgeat A., Gipouloux O., Smai F.  Scaling up of source terms with random behavior for modelling transport migration of contaminants in aquifers.  Nonlinear Analysis: Real World Applications.  11 (6), 4513–4523 (2010).
  7. Bilushchak Y., Chernukha O.  Modeling of the Processes of Heterodiffusion in Two Ways for the Cascade Decay of Admixture Particles. II. Quantitative Analysis.  Journal of Mathematical Sciences.  256, 482–496 (2021).
  8. Chernukha O. Y., Bilushchak Y. I.  A Mathematical Model of Two-Way Heterodiffusion Processes with Cascade Decay of Migrating Particles.  Journal of Mathematical Sciences.  253, 156–167 (2021).
  9. Chaplya Y., Chernukha O.  Mathematical modeling diffusion of decaying particles in regular structures.  Reviews on Advanced Materials Science.  23 (1), 21–31 (2010).
  10. Pukach P., Chernukha Y.  Mathematical modeling of impurity diffusion process under given statistics of a system of point mass sources. I.  Mathematical Modeling and Computing.  11 (2), 385–393 (2024).
  11. Abramowitz M., Stegun I. A.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.  New York, Dover (1972).
  12. Mood A. M., Graybill F. A., Boes D. C.  Introduction to the theory of statistics.  McGraw-Hill (1974).
  13. Chernukha O., Bilushchack Y., Chuchvara A.  Modelling the diffusion processes in stochastically non-homogeneous structures.  Lviv, Rastr-7 (2016).