Integration of hesitant fuzzy set and interval type-2 fuzzy set in analytic hierarchy process

2025;
: pp. 481–489
https://doi.org/10.23939/mmc2025.02.481
Received: December 21, 2024
Revised: May 19, 2025
Accepted: May 20, 2025

Najib N. M., Abdullah L., Ahmad A., Samsudin S. S.  Integration of hesitant fuzzy set and interval type-2 fuzzy set in analytic hierarchy process.  Mathematical Modeling and Computing. Vol. 12, No. 2, pp. 481–489 (2025)  

1
Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA
2
Faculty of Computer Science and Mathematics, Universiti Malaysia Terengganu
3
Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA
4
Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA

In the broad application of the analytic hierarchy process (AHP) to address decision problems pertaining to multi-criteria decision-making, crisp values are often used to represent the linguistic judgement made by experts or decision makers.  The numerous fuzzy approaches proposed in prior studies, such as interval type-2 fuzzy set (IT2FS) and hesitant fuzzy set (HFS), may serve as alternative models to tackle both vagueness and uncertainty during the decision process.  As such, this study offers a new AHP framework characterised by the integration of IT2FS and HFS for linguistic variables, called Interval Type-2 Fuzzy Hesitant Number (IT2FHN).  Unlike AHP, which uses crisp numbers in a direct manner, the method introduces IT2FS and HFS approaches to improve judgement within the fuzzy decision-making setting.  This approach incorporates several linguistic variables into IT2FHN, while the technique of rank value normalises both the lower and upper memberships of IT2FHN.  The integrated method proposed in this study is presented based on three numerical instances outlined by past research.  The comparative findings demonstrate the feasibility of the decision model.  The model captures nuanced differences in judgments, ensuring that each contributes meaningfully to the final outcome.

  1. Giráldez-Cru J., Chica M., Cord\'{o}n O.  An Integrative Decision-Making Mechanism for Consumers' Brand Selection using 2-Tuple Fuzzy Linguistic Perceptions and Decision Heuristics.  International Journal of Fuzzy Systems.  25, 59–79 (2023).
  2. Faizi S., Rashid T., Sałabun W., Zafar S., Wątróbski J.  Decision Making with Uncertainty Using Hesitant Fuzzy Sets.  International Journal of Fuzzy Systems.  20, 93–103 (2018).
  3. Varshney A. K., Torra V.  Literature Review of the Recent Trends and Applications in Various Fuzzy Rule-Based Systems.  International Journal of Fuzzy Systems.  25, 2163–2186 (2023).
  4. Zadeh L. A.  Fuzzy sets.  Information and Control.  8 (3), 338–353 (1965).
  5. Salimian F., Damiri M., Ramezankhani M., Fariman S. K.  Developing a New Interval Type-2 Hesitant Fuzzy TOPSIS-Based Fuzzy Best-Worst Multicriteria Decision-Making Method for Competitive Pricing in Supply Chain.  Journal of Mathematics.  2022, 7879028 (2022).
  6. Dincer H., Uzunkaya S. S., Yüksel S.  An IT2-Based Hybrid Decision-Making Model Using Hesitant Fuzzy Linguistic Term Sets for Selecting the Development Plan of Financial Economics.  International Journal of Computational Intelligence Systems.  12 (2), 460–473 (2019).
  7. Chai N., Zhou W., Jiang Z.  Sustainable supplier selection using an intuitionistic and interval-valued fuzzy MCDM approach based on cumulative prospect theory.  Information Sciences.  626, 710–-737 (2023).
  8. Saaty T. L.  The Analytic Hierarchy Process.  McGraw-Hill Book Co., New York (1980).
  9. Raji S. A., Akintuyi A. O., Wunude E. O., Fashoto B.  Coupling MCDM-based ensemble and AHP for the sustainable management of erosion risk in a tropical Sub-Saharan basin.  Watershed Ecology and the Environment.  5, 186–208 (2023).
  10. Shekar P. R., Mathew A.  Assessing groundwater potential zones and artificial recharge sites in the monsoon-fed Murredu river basin, India: An integrated approach using GIS, AHP, and Fuzzy-AHP.  Groundwater for Sustainable Development.  23, 100994 (2023).
  11. Requia W. J., Kondo E. K., Adams M. D., Gold D. R., Struchiner C. J.  Risk of the Brazilian health care system over 5572 municipalities to exceed health care capacity due to the 2019 novel coronavirus (COVID-19).  Science of The Total Environment.  730, 139144 (2020).
  12. Sotoudeh-Anvari A.  The applications of MCDM methods in COVID-19 pandemic: A state of the art review.  Applied Soft Computing.  126, 109238 (2022).
  13. Fu X.-L., Ni H., Zhou A., Jiang Z.-Y., Jiang N.-J., Du Y.-J.  An integrated fuzzy AHP and fuzzy TOPSIS approach for screening backfill materials for contaminant containment in slurry trench cutoff walls.  Journal of Cleaner Production.  419, 138242 (2023).
  14. Rasmussen A., Sabic H., Saha S., Nielsen I. E.  Supplier selection for aerospace and defense industry through MCDM methods.  Cleaner Engineering and Technology.  12, 100590 (2023).
  15. Lyu H.-M., Yin Z.-Y.  An improved MCDM combined with GIS for risk assessment of multi-hazards in Hong Kong.  Sustainable Cities and Society.  91, 104427 (2023).
  16. Chen T., Lin C.-W.  Smart and automation technologies for ensuring the long-term operation of a factory amid the COVID-19 pandemic: An evolving fuzzy assessment approach.  International Journal of Advanced Manufacturing Technology.  111 (11), 3545–3558 (2020).
  17. Adhikari D., Gazi K. H., Giri B. C., Azizzadeh F., Mondal S. P.  Empowerment of women in India as different perspectives based on the AHP-TOPSIS inspired multi-criterion decision making method.  Results in Control and Optimization.  12, 100271 (2023).
  18. Shahnazi R., Alimohammadlou M.  Investigating risks in renewable energy in oil-producing countries through multi-criteria decision-making methods based on interval type-2 fuzzy sets: A case study of Iran.  Renewable Energy.  191, 1009–1027 (2022).
  19. Mendel J. M., John R. I., Liu F.  Interval Type-2 Fuzzy Logic Systems Made Simple.  IEEE Transactions on Fuzzy Systems.  14 (6), 808–821 (2006).
  20. Torra V.  Hesitant fuzzy sets.  International Journal of Intelligent Systems.  25 (6), 529–539 (2010).
  21. Hu J., Zhang Y., Chen X., Liu Y.  Multi-criteria decision making method based on possibility degree of interval type-2 fuzzy number.  Knowledge-based systems.  43, 21–29 (2013).
  22. Wu D., Mendel J. M.  Aggregation Using the Linguistic Weighted Average and Interval Type-2 Fuzzy Sets.  IEEE Transaction Fuzzy System.  15 (6), 1145–1161 (2007).
  23. Mendel J. M., Wu D.  Perceptual Computing: Aiding People in Making Subjective Judgments.  Wiley-IEEE, Hoboken (2010).
  24. Torra V., Narukawa Y.  On hesitant fuzzy sets and decision.  2009 IEEE International Conference on Fuzzy Systems.  1378–1382 (2009).
  25. Xia M., Xu Z.  Hesitant fuzzy information aggregation in decision making.  International Journal of Approximate Reasoning.  52 (3), 395–407 (2011).
  26. Chou Y.-C., Sun C.-C., Yen H.-Y.  Evaluating the criteria for human resource for science and technology (HRST) based on an integrated fuzzy AHP and fuzzy DEMATEL approach.  Applied Soft Computing.  12 (1), 64–71 (2012).
  27. Gandhi S., Mangla S. K., Kumar P., Kumar D.  A combined approach using AHP and DEMATEL for evaluating success factors in implementation of green supply chain management in Indian manufacturing industries.  International Journal of Logistics Research and Applications.  19 (6), 537–561 (2016).
  28. Tooranloo H. S., Azadi M. H., Sayyahpoor A.  Analyzing factors affecting implementation success of sustainable human resource management (SHRM) using a hybrid approach of FAHP and Type-2 fuzzy DEMATEL.  Journal of Cleaner Production.  162, 1252–1265 (2017).