Boundary layer flow and heat transfer towards a stretching or shrinking cylinder within carbon nanotubes with hydromagnetic effects

2025;
: pp. 957–971
Received: March 03, 2025
Revised: September 28, 2025
Accepted: September 29, 2025

Sidin A. A. A., Bachok N., Wahid N. S., Mustafa M. S.  Boundary layer flow and heat transfer towards a stretching or shrinking cylinder within carbon nanotubes with hydromagnetic effects.  Mathematical Modeling and Computing. Vol. 12, No. 3, pp. 957–971 (2025)

1
Institute for Mathematical Research, Universiti Putra Malaysia
2
Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia; Institute for Mathematical Research, Universiti Putra Malaysia
3
Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia
4
Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia

The numerical investigation of stagnation point flow past a stretching or shrinking cylinder in carbon nanotubes with the presence of hydromagnetic effects is examined.  This study has been solved by ordinary differential equations obtained using the similarity transformation that transformed from the governing equations along with the boundary conditions, then implemented the bvp4c solver in MATLAB software platform, ensuring accurate results.  Considering two types of base fluids, namely water and kerosene.  Also, single-wall and multi-wall types of carbon nanotubes are used in this study, with single-wall and multi-walled consisting of different values of density.  The study is investigated by generating the graphical result of the velocity, temperature, skin friction coefficient and heat transfer rate.  Several parameters are considered, such as magnetic field $M$, curvature parameter $\gamma$, stretching or shrinking parameter $\varepsilon$ and nanoparticle volume fraction $\varphi$.  From the numerical results, it is demonstrated that a non-unique solution exists for the shrinking parameter, while a unique solution is obtained for stretching parameter.  Furthermore, single-walled carbon nanotubes and kerosene-based nanofluid are found to be more effective for heat transfer than multi-walled carbon nanotubes and water-based nanofluid.  Response surface methodology (RSM) is utilized to optimize the heat transfer, with the heat transfer maximized for water-SWCNT estimated at $0.880135$ and a desirability of $99.98\%$ which is higher than water-MWCNT, indicating water-SWCNT is more effective.

  1. Wang C. Y.  Fluid flow due to a stretching cylinder.  Physics of Fluids.  31 (3), 466–468 (1988).
  2. Mukhopadhyay S.  MHD boundary layer slip flow along a stretching cylinder.  Ain Shams Engineering Journal.  4 (2), 317–324 (2013).
  3. Najib N., Bachok N., Arifin N. M., Ishak A.  Stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder.  Scientific Reports.  4 (1), 4178 (2014).
  4. Mishra U., Singh G.  Dual solutions of mixed convection flow with momentum and thermal slip flow over a permeable shrinking cylinder.  Computers & Fluids.  93, 107–115 (2014).
  5. Mat N. A. A., Arifin N. M., Nazar R., Bachok N.  Boundary layer stagnation-point slip flow and heat transfer towards a shrinking/stretching cylinder over a permeable surface.  Applied Mathematics.  6 (3), 466–475 (2015).
  6. Khashi'ie N. S., Waini I., Zainal N. A., Hamzah K., Kasim A. R. K.  Hybrid nanofluid flow past a shrinking cylinder with prescribed surface heat flux.  Symmetry.  12 (9), 1493 (2020).
  7. Awaludin I. S., Ahmad R., Ishak A.  On the stability of the flow over a shrinking cylinder with prescribed surface heat flux.  Propulsion and Power Research.  9 (2), 181–187 (2020).
  8. Kardri M. A., Bachok N., Arifin N. M., Ali F. M., Rahim Y. F.  Magnetohydrodynamic flow past a nonlinear stretching or shrinking cylinder in nanofluid with viscous dissipation and heat generation effect.  Journal of Advanced Research in Fluid Mechanics and Thermal Sciences.  90 (1), 102–114 (2022).
  9. Choi S. U., Eastman J. A.  Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29).  Argonne National Lab.(ANL), Argonne, IL (United States), (1995).
  10. Arifin N. M., Nazar R., Pop I.  Viscous flow due to a permeable stretching/shrinking sheet in a nanofluid.  Sains Malaysiana.  40 (12), 1359–1367 (2011).
  11. Wang C. Y.  Stagnation flow towards a shrinking sheet.  International Journal of Non-Linear Mechanics.  43 (5), 377–382 (2008).
  12. Tiwari R. K., Das M. K.  Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids.  International Journal of heat and Mass transfer.  50 (9–10), 2002–2018 (2007).
  13. Bachok N., Ishak A., Pop I.  Boundary-layer flow of nanofluids over a moving surface in a flowing fluid.  International Journal of Thermal Sciences.  49 (9), 1663–1668 (2010).
  14. Makinde O. D., Aziz A.  Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition.  International Journal of Thermal Sciences.  50 (7), 1326–1332 (2011).
  15. Bachok N., Ishak A., Pop I.  Unsteady boundary-layer flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet.  International Journal of Heat and Mass Transfer.  55 (7–8), 2102–2109 (2012).
  16. Bachok N., Ishak A., Nazar R., Senu N.  Stagnation-point flow over a permeable stretching/shrinking sheet in a copper-water nanofluid.  Boundary Value Problems.  2013, 39 (2013).
  17. Iijima S.  Helical microtubules of graphitic carbon.  Nature.  354 (6348), 56–58 (1991).
  18. Halelfadl S., Maré T., Estellé P.  Efficiency of carbon nanotubes water based nanofluids as coolants.  Experimental Thermal and Fluid Science.  53, 104–110 (2014).
  19. Anuar N. S., Bachok N., Arifin N. M., Rosali H.  MHD flow past a nonlinear stretching/shrinking sheet in carbon nanotubes: Stability analysis.  Chinese Journal of Physics.  65, 436–446 (2020).
  20. Mahapatra T. R., Gupta A. S.  Magnetohydrodynamic stagnation-point flow towards a stretching sheet.  Acta Mechanica.  152 (1), 191–196 (2001).
  21. Aman F., Ishak A., Pop I.  Magnetohydrodynamic stagnation-point flow towards a stretching/shrinking sheet with slip effects.  International Communications in Heat and Mass Transfer.  47, 68–72 (2013).
  22. Ishak A., Nazar R., Pop I.  Magnetohydrodynamic (MHD) flow of a micropolar fluid towards a stagnation point on a vertical surface.  Computers & Mathematics with Applications.  56 (12), 3188–3194 (2008).
  23. Uddin Z., Kumar M.  MHD Heat and Mass Transfer Free Convection Flow near The Lower Stagnation Point of an Isothermal Cylinder Imbedded in Porous Domain with the Presence of Radiation.  Jordan Journal of Mechanical & Industrial Engineering.  5 (5), 419–423 (2011).
  24. Uddin Z., Kumar M.  Hall and ion-slip effect on MHD boundary layer flow of a micro polar fluid past a wedge.  Scientia Iranica.  20 (3), 467–476 (2013).
  25. Uddin Z., Kumar M., Harmand S.  Influence of thermal radiation and heat generation/absorption on MHD heat transfer flow of a micropolar fluid past a wedge considering hall and ion slip currents.  Thermal Science.  18 (suppl. 2), 489–502 (2014).
  26. Sama N. A. A., Bachok N., Arifin N. M.  The significant effect of hydromagnetic on carbon nanotubes based nanofluids flow and heat transfer past a porous stretching/shrinking sheet.  Journal of Advanced Research in Fluid Mechanics and Thermal Sciences.  106 (1), 51–64 (2023).
  27. Anuar N. S., Bachok N., Arifin N. M., Rosali H.  Stagnation point flow and heat transfer over an exponentially stretching/shrinking sheet in CNT with homogeneous–heterogeneous reaction: stability analysis.  Symmetry.  11 (4), 522 (2019).
  28. Norzawary N. H. A., Bachok N., Ali F. M., Arifin N. M.  Slip Flow Over an Exponentially Stretching/Shrinking Sheet in a Carbon Nanotubes with Heat Generation: Stability Analysis.  Journal of Advanced Research in Fluid Mechanics and Thermal Sciences.  108 (1), 28–38 (2023).
  29. Shirvan K. M., Mamourian M., Mirzakhanlari S., Ellahi R., Vafai K.  Numerical investigation and sensitivity analysis of effective parameters on combined heat transfer performance in a porous solar cavity receiver by response surface methodology.  International Journal of Heat and Mass Transfer.  105, 811–825 (2017).
  30. Mahanthesh B., Shehzad S. A., Mackolil J., Shashikumar N. S.  Heat transfer optimization of hybrid nanomaterial using modified Buongiorno model: A sensitivity analysis.  International Journal of Heat and Mass Transfer.  171, 121081 (2021).
  31. Mahanthesh B., Thriveni K., Rana P., Muhammad T.  Radiative heat transfer of nanomaterial on a convectively heated circular tube with activation energy and nanoparticle aggregation kinematic effects.  International Communications in Heat and Mass Transfer.  127, 105568 (2021).
  32. Yahaya R I., Mustafa M. S., Arifin N. M., Pop\:I., Ali F. M., Isa S. S. P. M.  Hybrid nanofluid flow past a biaxial stretching/shrinking permeable surface with radiation effect: Stability analysis and heat transfer optimization.  Chinese Journal of Physics.  85, 402–420 (2023).
  33. Othman M. N., Jedi A., Bakar N. A. A.  MHD Stagnation Point on Nanofluid Flow and Heat Transfer of Carbon Nanotube over a Shrinking Surface with Heat Sink Effect.  Molecules.  26 (24), 7441 (2021).
  34. Alhadri\:M., Raza J., Yashkun U., Lund L. A., Maatki C., Khan S. U., Kolsi L.  Response surface methodology (RSM) and artificial neural network (ANN) simulations for thermal flow hybrid nanofluid flow with Darcy-Forchheimer effects.  Journal of the Indian Chemical Society.  99 (8), 100607 (2022).