Resurgence Prediction of Ten Infectious Diseases under Surveillance in Senegal

2026;
: pp. 52–59
Received: August 16, 2026
Revised: January 21, 2026
Accepted: January 28, 2026

Ndao A., Seck C. T., Diop B.  Resurgence Prediction of Ten Infectious Diseases under Surveillance in Senegal.  Mathematical Modeling and Computing. Vol. 13, No. 1, pp. 52–59 (2026)

1
Université Alioune Diop, BP 30 Bambey, Sénégal
2
Universite Alioune Diop, BP 30 Bambey, Senegal
3
Direction de la Prévention, Ministère de la Santé, Dakar, Sénégal

In this paper, there are proposed two multi-class predictive models for estimating the resurgence probability of ten infectious diseases under epidemic surveillance in Senegal.  The first model is a Multiple Binary Random Forest (MBRF), which utilizes the ranger function with Gini criterion and allows to separately predict each of the ten diseases while taking account of their interdependencies.  The second model is a Multi-Output Decision Tree (MODT), which introduces an inertia criterion (calculated with Chi-square distance) as the node impurity measure and allows to simultaneously predict all of ten diseases. Data come from the global disease surveillance database of the Ministry of Health, and contain information, on 68698 instances, related to disease's, district's as well as patient's characteristics.  The results showed that, during the study period (January 2018 to November 2022), these ten pathologies recorded an average resurgence probability of 12.2\%, except for Poliomyelitis, which had a lower score estimated at 2.4%, and Covid-19 which showed a fairly high resurgence rate hovering 60%.  Compared to standard algorithms such as: multi-class random forests (MCRF) and multinomial logistic regression (MLR), our two models provided better performance.  For example, for F1-score, we have:  MBRF (0.9999), MODT (0.8572), MCRF (0.8451), MLR (0.8211)

  1. Chen X., Moraga P.  Forecasting dengue across Brazil with LSTM neural networks and SHAP-driven lagged climate and spatial effects.  BMC Public Health.  25, 973 (2025).
  2. Santangelo O. E., Gentile V., Pizzo S., Giordano D., Cedrone F.  Machine Learning and Prediction of Infectious Diseases: A Systematic Review.  Machine Learning and Knowledge Extraction.  5 (1), 175–198 (2023).
  3. Wang C., Zhou J., Huang H., Shen H.  Classification Algorithms for Unbalanced High-Dimensional Data with Hyperbox Vertex Over-Sampling Iterative Support Vector Machine Approach.  2020 Chinese Control And Decision Conference (CCDC).  2294–2299 (2020).
  4. Evgeniou T., Pontil M.  Regularized multi–task learning.  KDD '04: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining.  109–117 (2004).
  5. Linusson H.  Multi-Output Random Forests.  Dissertation. University of Borеs/School of Business and IT (2013). https://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-17167.
  6. Glocker B., Pauly O., Konukoglu E., Criminisi A.  Joint Classification-Regression Forests for Spatially Structured Multi-object Segmentation.  Computer Vision – ECCV 2012.  870–881 (2012).
  7. Segal M. R.  Tree-structured methods for longitudinal data.  Journal of the American Statistical Association.  87 (418), 407–418 (1992).
  8. De'ath G.  Multivariate regression trees: a new technique for modeling species-environment relationships.  Ecology.  83 (4), 1105–1117 (2002).
  9. Segal M., Xiao Y.  Multivariate random forests.  Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery.  1 (1), 80–87 (2011).
  10. Zhang H.  Classification Trees for Multiple Binary Responses.  Journal of the American Statistical Association.  93 (441), 180–193 (1998).
  11. Read J., Pfahringer B., Holmes G., Frank E.  Classifier Chains for Multi-label Classification.  Machine Learning and Knowledge Discovery in Databases.  254–269 (2009).
  12. Read J., Martino L., Olmos P. M., Luengo D.  Scalable multi-output label prediction: From classifier chains to classifier trellises.  Pattern Recognition.  48 (6), 2096–2109 (2015).
  13. Ndao A., Seck C. T.  Identification of propagation risk factors for ten infectious disesases under surveillance in Senegal.  African Journal of Applied Statistics.  11 (1), 1535–1551 (2024).
  14. Barry A., Sagne S., Talla C., et al.   Surveillance sentinelle des maladies à potentiel épidémique au Sénégal, Revue d'Épidémiologie et de Santé Publique.  71 (3), 101872 (2021).
  15. Dieng A., Diouf J. B. N., Ndiaye S. M. L.  COVID-19 au S\'en\'egal: r\'eflexion d'un microbiologiste.  Pan African Medical Journal.  35 (2), 31 (2020).
  16. Diouf I., Bousso A., Sonko I.   Gestion de la pandémie COVID-19 au Sénégal [COVID-19 pandemic management in Senegal]. Médecine De Catastrophe – Urgences Collectives.  4 (3), 217–222 (2020).