Discrete solution for the nonlinear parabolic equations with diffusion terms in Museilak-spaces

2021;
: pp. 584–600
https://doi.org/10.23939/mmc2021.04.584
Received: May 23, 2021
Accepted: June 07, 2021

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 584–600 (2021)

1
Sidi Mohammed Ben Abdellah University, National School of Applied Sciences, Laboratory LAMA
2
Sidi Mohammed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, Laboratory LAMA, Department of Mathematics
3
Sidi Mohammed Ben Abdellah University, Poly-disciplinary Faculty of Taza, Laboratory LSI

In this paper, a  class of nonlinear evolution equations with damping arising in fluid dynamics and rheology is studied.  The nonlinear term is monotone and possesses a convex potential but exhibits non-standard growth.  The appropriate functional framework for such equations is the modularly Museilak–spaces.  The existence and uniqueness of a weak solution are proved using an approximation approach by combining an internal approximation with the backward Euler scheme, also a priori error estimate for the temporal semi-discretization is given.

  1. Gwiazda P., Świerczewska-Gwiazda A., Wróblewska A.  Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids.  Math. Methods Appl. Sci. 33 (2),  125–137 (2010).
  2. Musielak J.  Modular spaces and Orlicz spaces.  Lecture Notes in Math. (1983).
  3. Del Vecchio T., Posteraro M. R.  Existence and regularity results for nonlinear elliptic equations with measure data.  Adv. Differential Equations. 1 (5), 899–917 (1996).
  4. Di Nardo R., Feo F., Guibé O.  Existence result for nonlinear parabolic equations with lower order terms.  Analysis and Applications. 9 (2), 161–186 (2011).
  5. Blanchard D., Murat F., Redwane H.  Existence and uniqueness of a renormalized solution for fairly general class of non linear parabolic problems.  Journal of Differential Equations. 177 (2), 331–374 (2001).
  6. Aberqi A., Bennouna J., Mekkour M., Redwane H.  Renormalized solution for a nonlinear parabolic equation with lower order terms.  The Australian Journal of Mathematical Analysis and Applications. 10 (1), 1–15 (2013).
  7. Aberqi A., Bennouna J., Mekkour M., Redwane H.  Nonlinear parabolic inequality with lower order terms.  Applicable Analysis. 96 (12), 2102–2117 (2017).
  8. Aharouch L., Bennouna J.  Existence and uniqueness of solutions of unilateral problems in Orlicz spaces.  Nonlinear Analysis: Theory, Methods & Applications. 72 (9–10), 3553–3565 (2010).
  9. Aberqi A., Bennouna J., Elmassoudi M., Hammoumi M.  Existence and uniqueness of a renormalized solution of parabolic problems in Orlicz spaces. Monatshefte für Mathematik. 189, 195–219 (2019).
  10. Mukminov F. Kh.  Uniqueness of the renormalized solutions to the cauchy problem for an anistropic parabolic equation.  Ufa Mathematical Journal. 8 (2), 44–57 (2016).
  11. Mukminov F. Kh.  Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic SobolevOrlicz spaces.  Sbornik: Mathematics. 208 (8), 1187–1206 (2017).
  12. Emmrich E., Wroblewska-Kaminska A.  Convergence of a full discretization of quasi-linear parabolic equations in isotropic and anisotropic Orlicz spaces.  SIAM Journal on Numerical Analysis. 51 (2), 1163–1184 (2013).
  13. Ruf A. M.  Convergence of a full discretization for a second-order nonlinear elastodynamic equation in isotropic and anisotropic Orlicz spaces.  Zeitschrift für angewandte Mathematik und Physik. 68, 118  (2017).
  14. Elmassoudi M., Aberqi A., Bennouna J.  Existence of Entropy Solutions in Musielak–Orlicz Spaces Via a Sequence of Penalized Equations.  Boletim da Sociedade Paranaense de Matemática. 38 (6), 203–238 (2020).
  15. Ait Khellou M., Benkirane A., Douiri S. M.  Some properties of Musielak spaces with only the log-Hölder continuity condition and application.  Annals of Functional Analysis. 11, 1062–1080 (2020).
  16. Benkirane A., Sidi El Vally M.  Some approximation properties in Musielak–Orlicz–Sobolev spaces.  Thai journal of mathematics. 10 (2), 371–381 (2012).
  17. Elemine Vall M. S. B., Ahmed A., Touzani A., Benkirane A.  Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with L1 data.  Boletim da Sociedade Paranaense de Matemática. 36 (1), 125–150 (2018).
  18. Gossez J. P.  Some approximation properties in Orlicz–Sobolev spaces.  Studia Mathematica. 74 (1), 17–24 (1982).
  19. Ciarlet P. G.  Finite element methods (Part 1).  Handbook of Numerical Analysis. Vol. 2. North-Holland, Amsterdam (1991).
  20. Diening L., Růžička M.  Interpolation operators in Orlicz–Sobolev spaces.  Numerische Mathematik. 107,  107–129 (2007).
  21. Aberqi A., Bennouna J., Elmassoudi M.  Nonlinear elliptic equations with some measure data in Musielak–Orlicz space.  Nonlinear Dynamics and Systems Theory. 19 (2), 227–242 (2019).
  22. Gossez J.-P.  Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients.  Trans. Amer. Math. Soc. 190, 163–205 (1974).