The question of interest for the presented study is the mathematical modeling of wave propagation in dissipative media. The generalized fractional Zener model in the case of dimension d (d=1,2,3) is considered. This work is devoted to the mathematical analysis of such model: existence and uniqueness of the strong and weak solution and energy decay result which guarantees the wave dissipation. The existence of the weak solution is shown using a priori estimates for solutions which are also presented.
- Mainardi F. Fractional Calculus. In: Carpinteri A., Mainardi F. (eds) Fractals and Fractional Calculus in Continuum Mechanics. International Centre for Mechanical Sciences (Courses and Lectures), vol. 378. Springer, Vienna (1997).
- Mainardi F., Gorenflo R. Time-fractional derivatives in relaxation processes: a tutorial survey. An International Journal for Theory and Applications. 10, 269–308 (2008).
- Podlubny I. Fractional differential equation. Acadimic Press (1999).
- Heymans N., Bauwens J.-C. Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheologica Acta. 33, 210–219 (1994).
- Bachraoui M., Ait Ichou M., Hattaf K., Yousfi N. Spatiotemporal dynamics of a fractional model for hepatitis b virus infection with cellular immunity. Mathematical Modelling of Natural Phenomena. 16, 5 (2021).
- Ait-Bella F., El Rhabi M., Hakim A., Laghrib A. Analysis of the nonlocal wave propagation problem with volume constraints. Mathematical Modeling and Computing. 7 (2), 334–344 (2020).
- Atanackovic T. M., Janev M., Oparnica Lj., Pilipovic S., Zorica D. Space-time fractional Zener wave equation. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 471 (2174), 20140614 (2015).
- Metalert R., Shiessel H., Blument A., Nonnemachert T. F. Generalized viscoelastic models: Their fractional equation with solution. Journal of Physics A: Mathematical and General. 28, 6567–6584 (1995).
- Diethelm K., Ford N. J., Freed A. D., Luchko Yu. Algorithms for the fractional calculus: A selection of numerical methods. Computer Methods in Applied Mechanics and Engineering. 194 (6–8), 743–773 (2005).
- Ford N. J., Simpson A. C. The numerical solution of fractional differential equations: Speed versus accuracy. Numerical Algorithms. 26, 333–346 (2001).
- Mainardi F., Gorenflo R. Time-fractional derivatives in relaxation processes: a tutorial survey. Fractional Calculus and Applied Analysis. 10, 269–308 (2007).
- Moczo P., Kristek J. On the rheological models used for time-domain methods of seismic wave propagation. Geophysical Research Letters. 32 (1), (2005).
- Emmerich H., Korn M. Incorporation of attenuation into time-domain computations of seismic wave fields. Geophysic. 52 (9), 1252–1264 (1987).
- Konjik S., Oparnica L., Zorica D. Waves in fractional zener type viscoelastic media. Journal of Mathematical Analysis and Applications. 365 (10), 259–268 (2010).
- Ait Ichou M., El Amri H., Ezziani A. On existence and uniqueness of solution for space-time fractional Zener model. Acta Applicandae Mathematicae. 170, 593–609 (2020).
- Atanacković T. M., Janev M., Konjik S., Pilipović S. Wave equation for generalized Zener model containing complex order fractional derivatives. Continuum Mechanics and Thermodynamics. 29, 569–583 (2017).
- Ezziani A. Modélisation mathématique et numérique de la propagation d'ondes dans les milieux viscoélastiques et poroélastiques . PhD thesis, Université Paris Dauphine (2005).
- Haddar H., Li J.-R., Matignon D. Efficient solution of a wave equation with fractional-order-dissipative terms. Journal of Computational and Applied Mathematics. 234 (6), 2003–2010 (2010).
- Duvaut G., Lions J. L. Inéquations en mècanique et en physique. Dunod (1972).
- Nitsche J. A. On Korn's second inequality. R.A.I.R.O Numerical Analysis (1981).