Mathematical modeling of wave propagation in viscoelastic media with the fractional Zener model

The question of interest for the presented study is the mathematical modeling of wave propagation in dissipative media.  The generalized fractional Zener model in the case of dimension d (d=1,2,3) is considered.  This work is devoted to the mathematical analysis of such model: existence and uniqueness of the strong and weak solution and energy decay result which guarantees the wave dissipation.  The existence of the weak solution is shown using a priori estimates for solutions which are also presented.

  1. Mainardi F.  Fractional Calculus.  In: Carpinteri A., Mainardi F. (eds)  Fractals and Fractional Calculus in Continuum Mechanics.  International Centre for Mechanical Sciences (Courses and Lectures), vol. 378. Springer, Vienna (1997).
  2. Mainardi F., Gorenflo R.  Time-fractional derivatives in relaxation processes: a tutorial survey.  An International Journal for Theory and Applications. 10, 269–308 (2008).
  3. Podlubny I.  Fractional differential equation. Acadimic Press (1999).
  4. Heymans N., Bauwens J.-C.  Fractal rheological models and fractional differential equations for viscoelastic behavior.  Rheologica Acta. 33, 210–219 (1994).
  5. Bachraoui M., Ait Ichou M., Hattaf K., Yousfi N.  Spatiotemporal dynamics of a fractional model for hepatitis b virus infection with cellular immunity.  Mathematical Modelling of Natural Phenomena. 16, 5 (2021).
  6. Ait-Bella F., El Rhabi M., Hakim A., Laghrib A.  Analysis of the nonlocal wave propagation problem with volume constraints.  Mathematical Modeling and Computing. 7 (2), 334–344 (2020).
  7. Atanackovic T. M., Janev M., Oparnica Lj., Pilipovic S., Zorica D.  Space-time fractional Zener wave equation.  Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 471 (2174), 20140614 (2015).
  8. Metalert R., Shiessel H., Blument A., Nonnemachert T. F.  Generalized viscoelastic models: Their fractional equation with solution.  Journal of Physics A: Mathematical and General. 28, 6567–6584 (1995).
  9. Diethelm K., Ford N. J., Freed A. D., Luchko Yu.  Algorithms for the fractional calculus: A selection of numerical methods.  Computer Methods in Applied Mechanics and Engineering. 194 (6–8), 743–773 (2005).
  10. Ford N. J., Simpson A. C.  The numerical solution of fractional differential equations: Speed versus accuracy.  Numerical Algorithms. 26, 333–346 (2001).
  11. Mainardi F., Gorenflo R.  Time-fractional derivatives in relaxation processes: a tutorial survey.  Fractional Calculus and Applied Analysis. 10, 269–308 (2007).
  12. Moczo P., Kristek J.  On the rheological models used for time-domain methods of seismic wave propagation.  Geophysical Research Letters. 32 (1), (2005).
  13. Emmerich H., Korn M.  Incorporation of attenuation into time-domain computations of seismic wave fields.  Geophysic. 52 (9), 1252–1264 (1987).
  14. Konjik S., Oparnica L., Zorica D.  Waves in fractional zener type viscoelastic media.  Journal of Mathematical Analysis and Applications. 365 (10), 259–268 (2010).
  15. Ait Ichou M., El Amri H., Ezziani A.  On existence and uniqueness of solution for space-time fractional Zener model.  Acta Applicandae Mathematicae. 170, 593–609 (2020).
  16. Atanacković T. M., Janev M., Konjik S., Pilipović S.  Wave equation for generalized Zener model containing complex order fractional derivatives.  Continuum Mechanics and Thermodynamics. 29, 569–583 (2017).
  17. Ezziani A.  Modélisation mathématique et numérique de la propagation d'ondes dans les milieux viscoélastiques et poroélastiques .  PhD thesis, Université Paris Dauphine (2005).
  18. Haddar H., Li J.-R., Matignon D.  Efficient solution of a wave equation with fractional-order-dissipative terms.  Journal of Computational and Applied Mathematics. 234 (6), 2003–2010 (2010).
  19. Duvaut G., Lions J. L.  Inéquations en mècanique et en physique. Dunod (1972).
  20. Nitsche J. A.  On Korn's second inequality. R.A.I.R.O Numerical Analysis (1981).