Determination of coordinates of unmanned aircrafts by means of kinematic projection

2022;
: pp. 459–469
https://doi.org/10.23939/mmc2022.02.459
Received: January 20, 2022
Revised: March 09, 2022
Accepted: March 10, 2022

Mathematical Modeling and Computing, Vol. 9, No. 2, pp. 459–469 (2022)

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

A methodology for determining the mechanical trajectory and spatial coordinates of unmanned aircrafts by means of kinematic projection is described.  The suggested methodology consists in the formation of two moving independent centers of kinematic projection by launching intercepting drones into space.  Electromagnetic radio waves emitted by unmanned aircrafts pierce an unknown flying object and generate two independent projecting rays intersecting at the place of searching a flying object.  At that, the instantaneous (at a certain moment) projection of the point of spatial location of the searched object will be located in an imaginary `picture plane' on the line connecting the projections of the points created by projecting rays of the intercepting drones.  Since all the objects of projection are mobile in this case, the whole projection of the trajectory of the searched object will be displayed on the operator's monitor.  The formation of a `more picture-like plan' perpendicular to the main one will allow us to build an axonometric view not only for the projection, but directly for the aircraft spatial movement trajectory.  Every point of this trajectory gives us information about `instant' coordinates of the location of the aircraft in space. Velocity is calculated as the ratio of spatial displacement of a flying object to the duration of movement.  The scientific novelty of the method of determining the trajectories, velocities, and coordinates of an unmanned aircraft consists in the combination of radar detection of a moving object with kinematic design used for its implementation in order to calculate instantaneous coordinates of the object.  This methodology solves the problem of determining more accurately the coordinates of flying objects that are not clearly and qualitatively displayed on radar monitors due to small size, mass, and specific materials used in manufacture.  At the same time, the influence on the accuracy of determining the coordinates of unmanned aircrafts reflected from the fixed obstacles placed on the relief surface of earth was established.  The results of this study can be used in practice in military science, for example, during the anti-terrorist operation in the occupied territories of Ukraine, with the aim to detect and neutralize enemy reconnaissance unmanned aircrafts.  The use of this method in aerial photography for clear fixation of drone coordinates during aerial surveys for terrain topography is also promising.

  1. Rynin N. A.  Kinoperspektiva. Moskva, Kinofotoizdat (1936), (in Russian).
  2. Lyhachev L. N.  Ob odnom primenenii kinoperspektivy. Sb. Geometrografiya. Vyp. 1. Riga (1974), (in Russian).
  3. Lyhachev L. N.  Kinoperspektiva. Moskva, Vysshaya shkola  (1975), (in Russian).
  4. Lyhachev L. N.  Perspektivno-pryamougol'nye sopryazhenie proekcii. Nauchn.-tehn. sb. Vyp. 19. Ryga (1975), (in Russian).
  5. Kul'minskii O. K., Nykolaevskii G. K.  Kinoaksonometriya kak metod obemno-graficheskogo modelirovaniya. Prykl. geometriya i inzh. grafika. Vyp. 12, 136–138 (1971), (in Russian).
  6. Kul'minskii O. K.  Kinoperspektyva proektiruemoi avtomobyl'noi dorogi. Dissertation (1967), (in Russian).
  7. Myhailenko V. E., Obuhova V. S., Podgornyi A. L.  Formoobrazovanie obolochek v arhitekture. Kiev, Budivel'nyk (1972), (in Russian).
  8. Tkach D. Y.  Nekotorye voprosy kinoperspektivy i postroenie arhitekturnyh perspektiv.  Izd. vyssh. uch. zaved., ser. "Stroitel'stvo i arhitektura". No. 2 (1968), (in Russian).
  9. Pylypaka S. F.  Primenenie metodov nachertatel'noi geometrii dlya nahozhdeniya skorostei proizvol'nyh tochek tverdogo tela, sovershayushhego prostranstvennye dvizheniya.  Prikl. geometriia i inzh. grafika. 51, 62–64 (1991), (in Russian).
  10. Kalynovskaya O. P., Glogovskyi V. V., Pul'kevych Y. G.  K probleme edinoi teorii proekcyonnyh otobrazhenii.  Prikl. geom. i inzh. graf. 57, 45–50 (1994), (in Russian).
  11. Pul'kevych I. G.  Linijni operatory kinematychnyh proekciinyh vidobrazhen'.  Pr. Lviv. Mizhnar. nauk-metod. konf. z geometrychnogo modeliuvannia, inzh. ta komp. graf. Lviv (1994), (in Ukrainian).
  12. Kalynovs'ka O. P., Glogovs'kyi V. V., Pul'kevych I. G.  Nelinijni operatory kinematychnyh proekcijnyh vidobrazhen'.  Pr. Lviv. Mizhnar. nauk.-metod. konf. z geometrychnogo modeliuvannia, inzh. ta komp. graf. Lviv (1994), (in Ukrainian).
  13. Kalynovs'ka O. P., Glogovs'kyi V. V., Pul'kevych I. G.  Lokacijni zadachi kinematychnyh proekcijnyh vidobrazhen'.  Pr. Lviv. Mizhnar. nauk.-metod. konf. z geometrychnogo modeliuvannia, inzh. ta komp. graf. Lviv (1994), (in Ukrainian).
  14. Vanin V. V., Virchenko G. A., Golova O. O., Shambina S. L.  Zdobutky ta perspektyvy rozvytku strukturno-parametrychnogo geometrychnogo modeliuvannia.  Prykladna geometrija ta inzhenerna grafika: mizhvidom. nauk.-tehn. zb. 91, 45–50 (2013), (in Ukrainian).
  15. Gavrylenko Ye. A., Najdysh A. V.  Variatyvne dyskretne geometrychne modeliuvannia na osnovi prostorovyh kutovyh parametriv dyskretno predstavlenoi kryvoi drugogo porjadku gladkosti.  Prykladna geometrija ta inzhenerna grafika: mizhvidom. nauk.-tehn. zb. 91, 102–108 (2013), (in Ukrainian).
  16. Braylov A. Yu.  Sintez obobshhennogo zakona proekcyonnyh sviazei.  Prykladna geometriia ta inzhenerna grafika: mizhvidom. nauk.-tehn. zb. 94, 13–19 (2018), (in Ukrainian).
  17. Gumen O. M.  Tehnologiia avtomatyzovanogo geometrychnogo modelyuvannia proektyvnyh n-prostoriv.  Prykladna geometriia ta inzhenerna grafika: mizhvidom. nauk.-tehn. zb. 90, 92–96 (2012), (in Ukrainian).
  18. Ploskyi V. O.  Deiaki zauvazhennia shhodo vporiadkuvannia instrumental'nyh zasobiv prykladnoi geometrii.  Prykladna geometriia ta inzhenerna grafika: mizhvidom. nauk.-tehn. zb. 90, 254–261 (2012), (in Ukrainian).
  19. Svidrak I. G., Baranec'ka O. R., Topchii V. I., Shevchuk A. O., Galkina N. S.  Vyznachennia prostorovyh koordynat tochok panoramnogo znimannja.  Zbirnyk nauk prac' MDPU im. B. Hmel'nyc'kogo. 2, 136–140 (2014), (in Ukrainian).
  20. Kucenko L. M., Zapol's'kyi L. L., Suhar'kova O. I.  Geometrychne modeliuvannia mobil'noi gravitacijnoi ustanovky dlia zahystu bezpilotnykiv typu litaka.  Prykladna geometriia ta inzhenerna grafika: mizhvidom. nauk.-tehn. zb. 94, 60–65 (2018), (in Ukrainian).
  21. Virchenko S. G.  Deiaki pytannia kompleksnogo dynamichnogo formoutvorennia na prykladi proektuvannia kryla litaka.  Geometrychne modeliuvannia mobil'noi gravitacijnoi ustanovky dlia zahystu bezpilotnykiv typu litaka.  Prykladna geometriia ta inzhenerna grafika: mizhvidom. nauk.-tehn. zb. 94, 20–25 (2018), (in Ukrainian).
  22. Nezenko A. Y.  Parametrychne modeliuvannia kincevoi aerodynamichnoi poverhni litaka.  Prykladna geometriia ta inzhenerna grafika: mizhvidom. nauk.-tehn. zb. 94, 72–76 (2018), (in Ukrainian).