The solution of an infinite system of ternary differential equations

2022;
: pp. 833–841
https://doi.org/10.23939/mmc2022.04.833
Received: August 11, 2022
Revised: October 09, 2022
Accepted: October 10, 2022

Mathematical Modeling and Computing, Vol. 9, No. 4, pp. 833–841 (2022)

1
University of Digital Economics and Agrotechnologies
2
Department of Mathematics, Andijan State University
3
National University of Uzbekistan
4
Department of Mathematics and Statistics, Universiti Putra Malaysia

The present paper is devoted to an infinite system of differential equations.  This system consists of ternary differential equations  corresponding to $3\times3$ Jordan blocks.  The system is considered in the Hilbert space $l_2$.  A theorem about the existence and uniqueness of solution of the system is proved.

  1. Butkovskiy A. G.  Theory of Optimal Control of Distributed Parameter Systems. New York, Elsevier (1969).
  2. Albeverio S., Alimov Sh. A.  On a time-optimal control problem associated with the heat exchange process.  Applied Mathematics and Optimization.  57 (1), 58–68 (2008).
  3. Fursikov A. V.  Optimal Control of Distributed Systems. Theory and Applications.  Translations of Mathematical Monographs. Vol. 187. Amer. Math. Soc., Providence, Rhode Island (2000).
  4. Chernous'ko F. L.  Bounded controls in distributed-parameter systems.  Journal of Applied Mathematics and Mechanics.  56 (5), 707–723 (1992).
  5. Avdonin S. A., Ivanov S. A.  Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems.  Cambridge, Cambridge University Press (1995).
  6. Ibragimov G.  A problem of optimal pursuit in systems with distributed parameters.  Journal of Applied Mathematics and Mechanics.  66 (5), 719–724 (2002).
  7. Tukhtasinov M.  Some problems in the theory of differential pursuit games in systems with distributed parameters.  Journal of Applied Mathematics and Mechanics.  59 (6), 935–940 (1995).
  8. Tukhtasinov M., Mamatov M. Sh.  On pursuit problems in controlled distributed parameters systems.  Mathematical Notes.  84 (2), 256–262 (2008).
  9. Ladyzhenskaya O. A.  Kraevye zadachi matematicheskoy fiziki.  Moscow (1973), (in Russian).
  10. Satimov N. Yu., Tukhtasinov M.  Game problems on a fixed interval in controlled first-order evolution equations.  Mathematical Notes.  80 (3–4), 578–589 (2006).
  11. Satimov N. Yu., Tukhtasinov M.  On Some Game Problems for First-Order Controlled Evolution Equations.  Differential Equations.  41 (8), 1169–1177 (2005).
  12. Tukhtasinov M., Mamadaliyev N.  On the Problems of Pursuit and Deviation from Meeting in the Class of the Distributed Control Systems.  ROMAI Journal.  7 (2), 161–168 (2011).
  13. Azamov A. A., Ruziboev M. B.  The time-optimal problem for evolutionary partial differential equations.  Journal of Applied Mathematics and Mechanics.  77 (2), 220–224 (2013).
  14. Satimov N. Yu., Tukhtasinov M.  On game problems for second-order evolution equations. russian mathematics.  Russian Mathematics.  51 (1), 49–57 (2007).
  15. Ibragimov G., Allahabi F., Kuchkarov A. Sh.  A pursuit problem in an infinite system of second-order differential equations.  Ukrainian Mathematical Journal.  65 (8), 1203–1216 (2014).
  16. Ibragimov G., Risman M. H.  Pursuit and Evasion Differential Game in Hilbert space.  International Game Theory Review.  12 (3), 239–251 (2010).
  17. Ibragimov G.  Optimal pursuit time for a differential game in the Hilbert space $l_2$.  Science Asia.  39S, 25–30 (2013).
  18. Ibragimov G., Norshakila A. R., Kuchkarov A., Fudziah I.  Multi Pursuer Differential Game of Optimal Approach with Integral Constraints on Controls of Players.  Taiwanese Journal of Mathematics.  19 (3), 963–976 (2015).
  19. Alias I. A., Ibragimov G., Rakhmanov A.  Evasion Differential Game of Infinitely Many Evaders from Infinitely Many Pursuers in Hilbert Space.  Dynamic Games and Applications.  7, 347–359 (2016).
  20. Ibragimov G.  On possibility of evasion in a differential game, described by countable number differential equations.  Uzbek Mathematical Journal.  1, 42–47 (2004), (in Russian).
  21. Ibragimov G., Azamov A., Risman M. H.  Existence and Uniqueness of the Solution for an Infinite System of Differential Equations.  Journal KALAM, International Journal of Mathematics and Statistics.  1 (2), 9–14 (2008).