Temperature field of metal structures of transport facilities with a thin protective coating

2022;
: pp. 950–958
https://doi.org/10.23939/mmc2022.04.950
Received: July 07, 2022
Revised: October 14, 2022
Accepted: November 01, 2022

Mathematical Modeling and Computing, Vol. 9, No. 4, pp. 950–958 (2022)

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

A study of the temperature field in metal structures of transport facilities with corrosion-resistant coating under the conditions of changes in ambient temperature has been conducted.  The results of experimentally determined temperature distribution in the surface vicinity of a galvanized metal sheet are presented.  The data were obtained over the day at positive and negative surface temperatures.  Given a generalized boundary condition for the heat conduction problem, with a solid heated by a localized heat flow through a thin coating, there has been obtained and analyzed a temperature field.  The temperature distribution across the surface outside the heating region during heat propagation along the coating was analyzed.  Experimental data and model calculations, as well as temperature calculations allowing for the coating and not, have been compared.  It has been established that the effect of coating on the temperature distribution in the metal structure, when the solid is heated by a localized heat flow through a thin coating, is insignificant.

  1. Gera B., Kovalchuk V.  A study of the effects of climatic temperature changes on the corrugated structure of a culvert of a transportation facility.  Eastern-European Journal of Enterprise Technologies.  3/7 (99), 26–35 (2019).
  2. AASHTO Guide specifications: Thermal effects in concrete bridge superstructures.  Washington. DC: American Association of State Highway and Transportation Officials. AASHTO (1989).
  3. Li D.,  Maes M., Dilger W.  Thermal design criteria for deep prestressed concrete girders based on the data from confederation bridge.  Canadian Journal of Civil Engineering.  31 (5), 813–825 (2004).
  4. Kulchytsky–Zhyhailo R., Matysiak S.J., Perkowski D.S.  On the quasi-stationaryproblem of heat conduction for a homogeneous half-space with composite coating.  Acta Mechanica.  231, 1241–1251 (2020).
  5. Matysiak S., Perkowski D.  On heat conduction problems in a composite halfspace with a nonhomogeneous coating.  Heat Transfer Research.  47 (12), 1141–1155 (2016).
  6. Shevchuk V. A.  Generalized boundary conditions of radiative–convective heat exchange of bodies with the environment through multi-layer non-planar coatings.  Journal of Mathematical Sciences.  261, 95–114 (2022).
  7. Shevchuk V. A.  Heat conduction in plates with thin two-sided multilayer coatings under the conditions of nonstationary heating.  Journal of Mathematical Sciences.  223, 184–197 (2017).
  8. Luchko Y. Y.  Algorithm for determining boundary conditions for the study of temperature strains and railway bridges beam structure deformations caused by climatic effects.  Visnyk ODABA.  46, 233–243 (2012).
  9. Perkowski D. M.  On axisymmetric heat conduction problem for FGM layer inhomogeneous substrate.  International Communications in Heat and Mass Transfer.  57, 157–162 (2014).
  10. Mangerig I.  Klimatische Temperaturbeanspruchung von Stahl- und Stahlverbundbrucken.  Staaliche Materialpriifungsanstalt, Universitat Stuttgart, technische-wissenschaftliche Berichte.  4 (86), (1986), (in German).
  11. Shevchuk V. A., Havrys O., Shevchuk P.  Nonlinear boundary–value problem of radiative–convective heat transfer of bodies with multilayer coatings.  Mashynoznavstvo.  46 (6), 35–41 (2010).
  12. Gera B.  Modelling of nonideal heat transfer of contacting heat-conducting layers.  Physical Modeling and Information Technology.  16, 52–60 (2012), (in Ukrainian).
  13. Gera B.  Mathematical modeling of the conditions of nonideal thermal contactof layers through thin inclusion with heat sources.  Physical Modeling and Information Technology.  18, 61–72 (2013), (in Ukrainian).
  14. Gera B., Dmytruk V.  Obtaining and the study of the conditions of heat transfer through inhomogeneous inclusion with presence of heat sources.  Mathematical Modeling and Computing.  2 (1), 33–47 (2015).
  15. Sokolovskyy Ya., Levkovych M., Sokolovskyy I.  The study of heat transfer and stress-strain state of a material, taking into account its fractal structure.  Mathematical Modeling and Computing.  7 (2), 400–409 (2020).
  16. Sulym G. T., Kolodiy Y. O., Turchyn I. M.  Quasi-static stresses in a coated half-space under mixed heating conditions.  Visnyk Ternopilsk. National Technical University.  77 (1), 71–79 (2015).
  17. Turchyn I. M., Kolodiy Yu. O.  Quasistatic plane problem of thermoelasticity for the half space with coating under mixed conditions of heating.  Journal of Mathematical Sciences.  223, 145–158 (2017).
  18. Elperin T., Rudin G.  Thermal stresses in a coating–substrate assembly caused byinternal heat source.  Journal of Thermal Stresses.  39 (1), 90–102 (2016).
  19. Kovalchuk V., Hnativ Yu.,  Luchko J., Sysyn M.  Study of the temperature field and the thermos-elastic state of the multilayer soil-steel structure.  Roads and Bridges (Drogi i Mosty). 19 (1), 65–78 (2020).
  20. Musii R., Zhydyk U., Mokryk O., Melnyk N.  Functionally gradient isotropic cylindrical shell locally heated by heat sources.  Mathematical Modeling and Computing.  6 (2), 367–373 (2019).
  21. Kovalchuk V., Onyshchenko A., Fedorenko O., Habrel M., Parneta B., Voznyak O., Markul R., Parneta M., Rybak R.  A comprehensive procedure for estimating the stressed-strained state of a reinforced concrete bridge under the action of variable environmental temperatures.  Eastern-European Journal of Enterprise Technologies.  2/7 (110), 23–30 (2021).
  22. Kovalchuk V., Sobolevska Y., Onyshchenko A., Fedorenko O., Tokin O., Pavliv A., Kravets I., Lesiv J.  Procedure for determining the thermoelastic state of a reinforced concrete bridge beam strengthened with methyl methacrylate.  Eastern-European Journal of Enterprise Technologies.  4/7 (112), 26–33 (2021).
  23. Kulchytsky–Zhyhailo R., Bajkowski A.  Axisymmetrical problem of thermoelasticityfor halfspace with gradient coating.  International Journal of Mechanical Sciences.  106, 62–71 (2016).
  24. Kulchytsky–Zhyhailo R., Matysiak S., Bajkowski A.  Semi-analyticalsolution of three-dimensional thermoelastic problem for half-space with gradientcoating.  Journal of Thermal Stresses.  41 (9), 1169–1181 (2018).
  25. Pidstryhach Ya. S.  Selected works. National Academy of Sciences of Ukraine, Pidstryhach IAPMM.  Kyiv, Naukova dumka (1995).
  26. Burak Ya. Yo.  Selected works. Pidstryhach IAPMM.  Lviv, Akhil (2001).