ANALYTICAL MODEL OF THE MEASURER OF THERMOANEMOMETRIC TYPE OF KINEMATIC PARAMETERS OF THE BIPHASIC PULSING FLOW

2019;
: pp. 46-52
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University, Ukraine
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

The  structural  and  functional  diagrams  of  the  thermoanemometric  type  sensor  for measuring  the mono-  and biphasic  (liquid  +  gas) medium  by  the  pulsating  nature  of  the  flow  are  presented.  The  temperature  distribution  in  the  sensor environment is considered and the sensing elements are not in contact with the inner surface of the sensor body. On the basis of the heat balance equation, the equations were obtained to simulate the temperature of the sensing elements of the sensor, depending on the power consumption, the characteristics of material of the sensor elements, their mass and design dimensions, the thermal and technical characteristics and the kinematic parameters of the measuring environment. The results of temperature modeling of the sensing elements  for measuring  the  flow of milk and water are presented. The process of heat  flux propagation with an internal heat  source  from  the  sensing  element  of  the  sensor  with  a  cross-sectional  radius  is  considered,  described  by  the  differential equation of the intensity of the temperature propagation taking into account the thermal conductivity of the measuring medium and the material of the sensing element of the sensor. The equation for modeling the temperature at the boundary of the temperature field distribution of the sensing elements of the thermoanemometric sensor was obtained. The results of temperature modeling at the boundary of the temperature fields of sensor elements are presented. The simulation of the temperature of the sensing elements of the sensor and the distribution of the temperature field in the measuring environment is made taking into account the coefficient of  heat  transfer  of  the  sensor  elements  and  the  coefficient  of  thermal  conductivity  of  the medium. The  results  of modeling  the temperature change at the boundary of the temperature field and its distance from the elements depending on the flow velocity of the measuring medium are presented.

[1]  R.  C.  Baker,  Flow  measurement  handbook: industrial  designs,  operating  principles,  performance,  and applications. New York: Cambridge University Press, 2000. 

https://doi.org/10.1017/CBO9780511471100

[2]  J.  E.  Hardy,  J.  O  .Hylton,  T.  E.  McKnight. “Empirical  correlations  for  thermal  flow  meters  covering  a wide  range  of  thermal-physical  properties”,  In:  Nat.  Conf. Stand.  Labs,  1999.  [Online]  [30.01.2018].  Available:. http://www.iaea.org/inis/collection/NCLCollectionStore/Public/30/048/300....

[3] J. G. Olin. “Industrial Thermal Mass Flow meters, Part  1:  Principles  of Operation”, Measurements  and  Control, vol. 193, 1999. 

[4] A. Badarlis, V. Kumar, A. Pfau, A. Kalfas. “Novel sensor geometry for liquids serving in dispersion thermal flow meters.”,  In:  SENSOR+TEST  Conferences  2011  –  SENSOR Proceedings,  pp. 78–83, 2011.

[5]  R.  C.  Baker,  C.  Gimson,  “The  effects  of manufacturing methods on the precision of insertion and in-line thermal  mass  flow  meters”,  Flow  Measurement  and Instrumentation, vol. 12, no. 2, pp. 113–121, 2001.

https://doi.org/10.1016/S0955-5986(01)00005-X

[6] Rep. No. 2002/53, The effect of gas properties and installation  effects  on  thermal  mass  flow  meters,  2003. [Online].  Available:  http://www.tuvnel.com/_x90lbm/Report_FDMS03.pdf. 

[7] K. Rupnik, J. Kutin,  I. Bajsić. “A Method  for Gas Identification  in  Thermal  Dispersion  Mass  Flow  Meters”, Strojniški  vestnik  -  Journal  of Mechanical  Engineering,  vol. 60,  no.9,  pp.607-616,  2014.  [Online]  Available:  http://en.sv-jme.eu/data/upload/2014/09/08_2014_1889_Rupnik07.pdf

https://doi.org/10.5545/sv-jme.2014.1889

[8]  A.  Cebula,“Experimental  and  numerical investigation  of  thermal  flow  meter”,   Archives  of thermodynamics, vol. 36, no. 3, pp. 149–160, 2015, 

https://doi.org/10.1515/aoter-2015-0027

[9]  M.  Farzaneh-Gord,  S.  Parvizi,  A.  Arabkoohsar, L.Machado, R. Koury. “Potential use of capillary tube thermal mass  flow  meter  to  measure  residential  natural  gas  consumption”, J. Nat. Gas Sci. Eng., vol. 22, pp. 540–550, 2015.

https://doi.org/10.1016/j.jngse.2015.01.009

[10]  V.  Dmytriv,  I.  Dmytriv,  “Thermo-anemometer measuring of two-phase pulsating flows applying to the cyber-physical system of milk production”, in Proc. V Int. Sc. Cong. “Agricultural Machinery  2017”. Year  I,  vol.  1/1,  pp.  85–87. Varna, Bulgaria, 2017.

[11] V. Dmytriv, I. Dmytriv, T. Dmytriv, “Research in thermo-anemometric measuring  device  of  pulse  flow  of  two-phase medium”,  in  Proc.  17th  Int.  Sc.  Conf:  Engineering  for rural  development,  vol.  17, May  23–25,  pp.  898–904,  2018, Jelgava, Latvia: Un. Life Sciences and Techn.

https://doi.org/10.22616/ERDev2018.17.N200

[12] N. Belyaev, Heat Transfer Basics. Kyiv, Ukraine: High school, 1989. 

[13]  V.  Kulinchenko,  Handbook  of  heat  exchange calculations. Kyiv, Ukraine: Technique, 1980.