The purpose of the study. It needs to substantiate that sources of magnetic anomalies with wavelengths of the first thousand kilometers detected at the present time might have a magneto-mineralogical origin due to the existence of magnetic minerals at the mantle depths, in particular magnetite, hematite, native iron, as well as iron alloys. It should be also shown that present temporal changes of long-wave magnetic anomalies should be induced by changes of the magnetic properties of these minerals due to thermodynamic and fluid modes. According to numerous authors, the transformations of magnetic minerals occur in special tectonic zones of the upper mantle of the Earth, in particular at junction zones of lithospheric plates of different types, rifts, plumes, tectonic-thermal activation, etc. Areas of the upper mantle with temperatures below the Curie temperature of magnetite can be magnetic, such as subduction zones, cratons, and regions with the old oceanic lithosphere. Iron oxides might be a potential source of magnetic anomalies of the upper mantle besides magnetite and native iron, in particular hematite (α-Fe2O3), which is the dominant oxide in subduction zones at depths of 300 to 600 km. It was proved experimentally by foreign researchers that in cold subduction slabs, hematite remains its magnetic properties up to the mantle transition zone (approximately 410-600 km). Conclusions. A review of previous studies of native and foreign authors has made it possible to substantiate the possibility of the existence of magnetized rocks at the mantle depths, including native iron at the magneto-mineralogical level, and their possible changes due to thermodynamic factors and fluid regime. It has been experimentally proven by foreign researchers that in subduction zones of the lithospheric slabs their magnetization might be preserved for a long time at the mantle depths, as well as increase of magnetic susceptibility may observed due to the Hopkinson effect near the Curie temperature of magnetic minerals. Practical value. Information about the ability of the mantle to contain magnetic minerals and to have a residual magnetization up to the depths of the transition zone was obtained. It should be used in the interpretation of both modern magnetic anomalies and paleomagnetic data.
- 1. Blakely, B., Brocher, T. & Wells, R. (2005). Subduction - zone magnetic anomalies and implications for hydrated forearc mantle. Geology, 33 (6), 445-448. doi 10.1130/G21447.1
https://doi.org/10.1130/G21447.1
2. Drukarenko, V., Orlyuk, M. & Shestopalova, O. (2019). Magnetomineralogical substantiation of magnetization of the rocks of the lower crust and upper mantle. Monitoring of Geological Processes and Ecological Condition of the Environment: Materials of XIIIth International Scientific Conference, Kyiv, 12-15 November 2019, Kyiv, Ukraine. Conference CD-ROM Proceedings. DOI: 10.3997/2214-4609.201903209
https://doi.org/10.3997/2214-4609.201903209
3. Dunlop, D., Ozdemir, O. & Costanzo-Alvarez, V. (2010). Magnetic properties of rocks of the Kapuskasing uplift (Ontario, Canada) and origin of long-wavelength magnetic anomalies. Geophysical Journal International, 183, 645-658.
https://doi.org/10.1111/j.1365-246X.2010.04778.x
4. Dunlop, D. (2014). High-temperature susceptibility of magnetite: a new pseudo-single-domain effect. Geophysical Journal International, 199, 707-716. doi: 10.1093/gji/ggu247
https://doi.org/10.1093/gji/ggu247
5. Dyment, J., Lesur, V., Hamoudi, M., Choi, Y., Thebault, E., & Catalan, M. (2016). World Digital Magnetic Anomaly Map version 2.0. AGU Fall Meeting: Abstract GP13B-1310, San Francisco, Calif., 2015. Retrieved from http://www.wdmam.org
6. Fedorova, N. V. & Shapiro, V. A. (1998). Reference field for the airborne magnetic data. Earth Planets Space, 50, 397-404.
https://doi.org/10.1186/BF03352126
7. Ferre, E. C., Friedman, S. A., Martin-Hernandez, F., Feinberg, J. M., Conder, J. A., & Lonov, D. A. (2013). The magnetism of mantle xenoliths and potential implications for sub - Moho magnetic sources. Geophysical Researh Letters, American Geophysics Union, 40 (1), 105-110. https://doi.org/10.1029/2012GL054100
https://doi.org/10.1029/2012GL054100
8. Ferré, E. C., Friedman, S. A, Martín-Hernández, F., Feinberg, J. M., Till, J. L., Ionov, D. A. & Conder, J. A. (2014). Eight good reasons why the uppermost mantle could be magnetic. Tectonophysics, 624-625, 3-14.
https://doi.org/10.1016/j.tecto.2014.01.004
9. Fluid regime of the Earth's crust and upper mantle (1977). Мoscow: Nauka, 210 p. (in Russian)
10. Frost, D. J. & McCammon, C. A. (2008). The redox state of Earth's mantle. Ann. Rev. Earth Planet. Sci., 36, 389-420.
https://doi.org/10.1146/annurev.earth.36.031207.124322
11. Gadirov, V. G., Eppelbaum, L. V., Kuderavets, R., Menshov, O., Gadirov, K. (2018). Indicative features of local magnetic anomalies from hydrocarbon deposits: Examples from Azerbaijan and Ukraine. Acta Geophysica, 66(6), 1463-1483. DOI: 10.1007/s11600-018-0224-0.
https://doi.org/10.1007/s11600-018-0224-0
12. Gantimurov, А. F. (1982). Fluid regime of iron-silicon systems. Nauka, Novosibirsk, 69. (in Russian)
13. Genshaft, Yu. S., Tselmovich, V.А. & Gapeev, А.К. (2000). Crystallization of high-titanium ferrospinel in silicate melts under PT conditions of the upper mantle. Paleomagnetism and rock magnetism. Мoscow, 18-20. (in Russian)
14. Goncharov, A. G., Ionov, D. A., Doucet, L. S. & Pokhilenko, L. N. (2012). Thermal state, oxygen fugacity and C-O-H fluid speciation in cratonic lithospheric mantle: new data peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth Planet. Sci. Lett., 357-358. doi:10.1016/j.epsl.2012.09.016
https://doi.org/10.1016/j.epsl.2012.09.016
15. Ishii, T., Huang, R., Myhill, R., Fei, H., Koemets, I., Liu, Z., Katsura, T. (2019). Sharp 660-km discontinuity controlled by extremely narrow binary post-spinel transition. Nature Geoscience, 12 (10), 1-4. DOI: 10.1038/s41561-019-0452-1
https://doi.org/10.1038/s41561-019-0452-1
16. Кadik, А.А., Lukanin, О.А. & Portnyagin, А.L. (1990). Magma formation during the upward movement of mantle matter: temperature regime and composition of the melts formed during adiabatic decompression of mantle ultrabasites. Geohimiya, 9, 1263-1276. (in Russian)
17. Kiseeva, E., Vasiukov, D., Wood, B., McCammon, C., Stachel, T., Bykov,. Dubrovinsky, L. (2018). Oxidized iron in garnets from the mantle transition zone. Nature Geoscience, 11(2), 144-147. DOI: 10.1038/s41561-017-0055-7
https://doi.org/10.1038/s41561-017-0055-7
18. Kiss, J., Prácser, E., Szarka, L., & Ádám, A. (2010). Magnetic phase transition and the magnetotellurics. Magyar geofizika, 51 (2), 1-15.
19. Kletetschka, G., Wasilewski, P. & Taylor, P. (2002). The role of hematite-ilmenite solid solution in the production of magnetic anomalies in ground- and satellite-based data. Tectonophysics, 347,167-177.
https://doi.org/10.1016/S0040-1951(01)00243-8
20. Komabayashi, T. & Fei, Y. (2010). Internally consistent thermodynamic database for iron to the Earth's core conditions. Journal of Geophysical research. Solid Earth, 115, B3. https://doi.org/10.1029/2009JB006442
https://doi.org/10.1029/2009JB006442
21. Korolev, E. A., Bakhtin A. I., Shilovskii, O. P., Nikolaeva, V.M., Vorobjov, V. V., Osin, Yu. N., Barieva, E. R. (2013). The finds of native iron in pyrite nodules from the Middle Jurassic deposits of Tatarstan. Uchenye zapiski Kazanskogo Universiteta. Estestvennye nauki, 155, 2, 182-189. (in Russian).
22. Knafelc, J., Filiberto, J., Ferre, E., Conder, J., Costello, L., Crandall, J., Schwenzer, S (2019). The effect of oxidation on the mineralogy and magnetic properties of olivine. American Mineralogist, Vol.104, 694-702. DOI: 10.2138/am-2019-6829
https://doi.org/10.2138/am-2019-6829
23. Kupenko, I., Aprilis, G., Vasiukov, D. M., McCammon, C., Chariton, S., Cerantola, V., ... & Sanchez-Valle, C. (2019). Magnetism in cold subducting slabs at mantle transition zone depths. Nature, 570(7759), 102-106. DOI: 10.1038/s41586-019-1254-8
https://doi.org/10.1038/s41586-019-1254-8
24. Kvasnitsa, I. V. & Kosovskiy, Ya. I. (2006). Native iron from the basalts of Volhyn (Ukraine). Theory, history, philosophy and practice of mineralogy: Materials of IV International mineralogical seminar, Syktyvkar, Geoprint, 2006, 122-123. (in Russian).
25. Lykasov, А. А., Ryss, G. М. & Vlasova, I. S. (2013). Phase transformations during the reduction of sulphide copper smelting slag by gasification products of carbonaceous reducing agents at a temperature of 1320 K. Vestnik YuUUrGU. Seriya "Мetallurgiya", 13 (1), 24-28. (in Russian)
26. Malvoisin, B., Carlut, J. & Brunet, F. (2012). Serpentinization of oceanic peridotites: 1. A high-sensitivity method to monitor magnetite production in hydrothermal experiments. Journal of Geophysical research, Vol. 117, B01104. doi:10.1029/2011JB008612
https://doi.org/10.1029/2011JB008612
27. Мarakushev, А. А. & Genkin, А. D. (1972). Thermodynamic conditions of the formation of metal carbides in connection with their presence in mafic, hyperbasite and in copper-nickel sulfide ores. Vestnik MGU. Geology, 5, 7-27. (in Russian)
28. McEnroe, S. A., Robinson P., Church, N. & Purucker, M. (2018). Magnetism at Depth: A View from an Ancient Continental Subduction and Collision Zone. Geochemistry Geophysics Geosystems, 4 (19). https://doi.org/10. 1002/2017GC007344
https://doi.org/10.1002/2017GC007344
29. Мelnik, Yu. P. & Stebnovskaya, Yu. М. (1976). The nature of the distribution of iron and the conditions of the formation of ferromagnetic minerals. Magnetic Anomalies of the Earth's Depths. Кiev: Naukova dumka, 64-73. (in Russian)
30. Menshov, O. & Sukhorada, A. (2017). Basic theory and methodology of soil geophysics: the first results of application. Visnyk of Taras Shevchenko National University of Kyiv: Geology, 4 (79), 35-39. http://doi.org/10.17721/1728-2713.79.05 (in Ukrainian)
https://doi.org/10.17721/1728-2713.79.05
31. Orlyuk, М. I. & Pashkevich, I. К. (2012). Deep sources of regional magnetic anomalies: tectonotypes and the relationship with transcore faults. Heofizicheskiy zhurnal, 34 (4), 224-234. (in Russian)
https://doi.org/10.24028/gzh.0203-3100.v34i4.2012.116776
32. Orlyuk, М. I., Marchenko, А. V. & Romenets, А. А. (2017). Spatial-temporeral changes in the geomagnetic field and seismisity. Heofizicheskiy zhurnal, 39 (6), 84-105. (in Russian)
https://doi.org/10.24028/gzh.0203-3100.v39i6.2017.116371
33. Orlyuk, М. I., Pashkevich, I. К., Marchenko, А. V. & Romenets, А. А. (2019). Crustal-mantle (?) origin of the long-wave Central European magnetic anomaly. Geophysics and geodynamics: forecasting and monitoring of the geological environment. Ed. V.Yu. Maksymchuk. Lviv: Rastr-7, 143-146. (in Ukrainian)
34. Orlyuk, M. I. (1999). Magnetic model of the Earth's crust of the south-west of the East European platform (Doctoral dissertation). Kyiv, 404. (in Russian)
35. Pecherskiy, D. M. (Ed.). (1994). Petromagnetic model of the lithosphere. Кyiv: Naukova Dumka, 176. (Russian)
36. Pecherskiy, D. M. (2016). Occurrence of metal iron inside planets. Heofizicheskiy zhurnal, 38 (5), 13-25. (in Russian)
https://doi.org/10.24028/gzh.0203-3100.v38i5.2016.107817
37. Ryabov, V. V., Pavlov, А. А. & Lopatin, G. G. (1985). Native iron of Siberian traps. Novosibirsk: Nauka, 169. (in Russian)
38. Shteinberg, D. S. & Lagutina, М. V. (1984). Carbon in ultrabasits and basits. Мoscow: Nauka, 110 P. (in Russian)
39. Slama, J., Usakova, M., Soka, M., Dosoudil, R. & Jansarik, V. (2017). Hopkinson Effect in Soft and Hard Magnetic Ferrites. 16th Czech and Slovak Conference on Magnetism, Košice, Slovakia, June 13-17. Acta Physica Polonica A, 131(4), 762-764. DOI: 10.12693/APhysPolA.131.762
https://doi.org/10.12693/APhysPolA.131.762
40. Sorokhtin, О. G. & Ushakov, S А. (2002). Evolution of the Earth. Мoscow: Publishing of МGU, 506 p. (in Russian)
41. Thébault, E., Purucker, M., Whaler, K. A., Langlais, B. & Sabaka,T. J. (2010). The Magnetic Field of the Earth's Lithosphere. Space Sci Rev. Springer Science+Business Media B.V. DOI 10.1007/s11214-010-9667-6
https://doi.org/10.1007/978-1-4419-7955-1_5
42. Wasilewski, P. J. & Warner, R. D. (1988). Magnetic petrology of deep crustal rocks - Ivrea Zone, Italy. Earth.Planet.Sci.Lett. 87, 347-361.
https://doi.org/10.1016/0012-821X(88)90022-2