Direct Synthesis and Characterization of Photo-Crosslinkable Biodegradable PLA-PEG-PLA Ttiblock Copolymer with Methacrylates Functions by Green Montmorillonite Clay Catalyst

2020;
: pp. 474 - 480
1
Laboratoire de Chimie des Polymères, Département de Chimie, FSEA, University of Oran 1 Ahmed Benbella
2
Laboratoire de Chimie des Polymères, Département de Chimie, FSEA, University of Oran 1 Ahmed Benbella
3
Oran1 University Ahmed Benbella, Department of Chemistry, FSEI University of Abdelhamid Ibn Badis – Mostaganem, Algeria
4
Laboratoire de Chimie des Polymères, Département de Chimie, FSEA, University of Oran 1 Ahmed Benbella
5
Oran1 University Ahmed Benbella

Di-methacrylated PLA-PEG-PLA triblock copolymers of polylactide and polyethylene glycol were synthesized in one-step process by bulk cationic polymerization of lactide in the presence of PEG with different average molecular weights, using Maghnite-H+, an acidic montmorillonite clay, as a solid non-toxic catalyst. The obtained di-methacrylated copolymer was analyzed by 1H NMR and DSC. The effect of Maghnite-H+ proportions and PEG average molecular weight on the copolymerization and methacrylation yields and on average molecular weight of the resulting copolymers was studied.

  1. Hsu Y., Masutani K., Yamaoka T., Kimura Y.:Polymer, 2015, 67, 157. https://doi.org/10.1016/j.polymer.2015.04.026
  2. Larrañeta E., Stewart S., Ervine M. et al.: J. Func. Biomat., 2018, 9, 113. https://doi.org/10.3390/jfb9010013
  3. Bhaskar B., Owen R.: J. Biomed Mater. Res., 2018, 106, 1334. https://doi.org/10.1002/jbm.a.36336
  4. Danafar H., Manjili H., Najafi M.: Drug. Res., 2016, 66, 495. https://doi.org/10.1055/s-0042-110931
  5. Danafar H., Rostamizadeh K., Hamidi M.: J. Pharm. Invest., 2018, 48, 381. https://doi.org/10.1007/s40005-017-0334-8
  6. Heidari K., Chan E., Young R. et al.: Ann. Biomed. Eng., 2017, 45, 1746. https://doi.org/10.1007/s10439-016-1749-5
  7. Sahoo S., Toh S., Goh J.: Biomaterials, 2010, 31, 2990. https://doi.org/10.1016/j.biomaterials.2010.01.004
  8. Luu Y., Kim K., Hsiao B. et al.: J. Control. Release, 2003, 89, 341. https://doi.org/10.1016/S0168-3659(03)00097-X
  9. Scaffaro R., Lopresti F., Botta L. et al.: J. Mech. Behav. Biomed. Mater., 2016, 54, 8.
  10. Venkatraman S., Jie P., Min F. et al.: Int. J. Pharm., 2005, 298, 219.
  11. Kaito T., Myoui A., Takaoka K. et al.: Biomaterials, 2005, 26, 73. https://doi.org/10.1016/j.biomaterials.2004.02.010
  12. Reena K., Balashanmugam P., Gajendiran M. et al.: J. Nanosci. Nanotech., 2016, 16, 4762. https://doi.org/10.1166/jnn.2016.12404
  13. Chitra A., Reena K., Manikandan K. et al.: J. Nanosci. Nanotech., 2015, 15, 4984. https://doi.org/10.1166/jnn.2015.10023
  14. Ouyang P., Kang Y., Yin G. et al.: Front. Mater. Sci. China, 2009, 3, 15. https://doi.org/10.1007/s11706-009-0017-0
  15. Cosco D., Paolino D., Angelis F. et al.: Eur. J. Pharm. Biopharm., 2015, 89, 30. https://doi.org/10.1016/j.ejpb.2014.11.012
  16. Yuan Z., Qu X., Wang Y. et al.: Colloid Surface B, 2015, 128, 489. https://doi.org/10.1016/j.colsurfb.2015.02.048
  17. Kim H., Kim E., Ha T. et al.: Colloid Surface B, 2015, 127, 206. https://doi.org/10.1016/j.colsurfb.2015.01.039
  18. Diao J., Wang H., Chang N. et al.:Dev. Biol., 2015, 406, 196. https://doi.org/10.1016/j.ydbio.2015.08.020
  19. Jain A., Goyal A., Mishra N. et al.:Int. J. Pharm., 2010, 387, 253. https://doi.org/10.1016/j.ijpharm.2009.12.013
  20. Jain A., Goyal A., Gupta N. et al.: J. Control. Release, 2009, 136, 161. https://doi.org/10.1016/j.jconrel.2009.02.010
  21. Nagahama K., Takahashi A., Ohya Y.: React. Funct. Polym., 2013, 73, 979. https://doi.org/10.1016/j.reactfunctpolym.2012.11.003
  22. Lim D.: J. Appl. Polym. Sci., 2000, 75, 1615. https://doi.org/10.1002/(SICI)1097-4628(20000328)75:13<1615::AID-APP7>3.0.CO;2-L
  23. Matsumoto J., Nakada Y., Sakurai K. et al.: Int. J. Pharm., 1999, 185, 93. https://doi.org/10.1016/S0378-5173(99)00153-2
  24. Harrane A., Leroy A., Nouailhas H. et al.: Biomed. Mater., 2011, 6, 1. https://doi.org/10.1088/1748-6041/6/6/065006
  25. Kricheldorf H., Kreiser-Saunders I., Stricker A.:Macromolecules, 2000, 33, 702. https://doi.org/10.1021/ma991181w
  26. Arbaoui F., Boucherit M.: Appl. Clay. Sci., 2014, 91, 6. https://doi.org/10.1016/j.clay.2014.02.001
  27. Bennabi S., Belbachir M.: Adv. Mater. Lett., 2015, 6, 271. https://doi.org/10.5185/amlett.2015.5660
  28. Akeb M., Harrane A., Belbachir M.: Green Mater., 2018, 6, 58. https://doi.org/10.1680/jgrma.17.00040
  29. Draoua Z., Harrane A., Belbachir M.: J. Macromol. Sci. A, 2015, 52, 130. https://doi.org/10.1080/10601325.2015.980763
  30. El-Kebir A., Harrane A., Belbachir M.: J. Sci. Eng., 2015, 41, 2179. https://doi.org/10.1007/s13369-015-1862-z
  31. Belbachir M., Bensaoula A.: Pat. US 7, 094, 823 B2, 2006.
  32. Ramazani F., Hiemstra C., Steendam R. et al.: Eur. J. Pharm. Biopharm. B., 2015, 95, 368. https://doi.org/10.1016/j.ejpb.2015.02.011
  33. Yang J., Liang Y., Han C.: Polymer, 2015, 79, 56. https://doi.org/10.1016/j.polymer.2015.09.067
  34. Yang L., El Ghzaoui A., Li S.: Int. J. Pharm., 2010, 400, 96. https://doi.org/10.1016/j.ijpharm.2010.08.037
  35. Byun Y., Rodriguez K., Han J. et al.: Int. J. Biol. Macromol., 2015, 81, 591. https://doi.org/10.1016/j.ijbiomac.2015.08.036
  36. Elkebir A., Harrane A., Belbachir M.: Mater. Res., 2016, 19, 132. https://doi.org/10.1590/1980-5373-MR-2015-0322