Green Polymerization of Vinyl Acetate Using Maghnite-Na+, an Exchanged Montmorillonite Clay, as an Ecologic Catalyst

2021;
: pp. 183 - 190
1
Laboratory of Polymer Chemistry, Department of Chemistry, Faculty of Exact and Applied Sciences, University Oran
2
Oran1 University Ahmed Benbella
3
Laboratory of Polymer Chemistry, Department of Chemistry, Faculty of Exact and Applied Sciences, University Oran

In this work, the green polymerization of vinyl acetate is carried out by a new method which consists in the use of clay called Maghnite-Na+ as an ecological catalyst, non-toxic, inexpensive and recyclable by a simple filtration. X-ray diffraction and scanning electron microscopy showed that Maghnite-Na+ is successfully obtained after cationic treatment (sodium) on crude maghnite. It is an effective alternative to replace toxic catalysts such as benzoyl peroxide and azobisisobutyronitrile which are mostly used during the synthesis of polyvinyl acetate (PVAc) making the polymerization reaction less problematic for the environment. The synthesis reaction is less energetic by the use of recycled polyurethane as a container for the reaction mixture and is considered as a renewable material and a good thermal insulator maintaining the temperature of 273 K for 6 h. The reaction in bulk is also preferred to avoid the use of a solvent and therefore to stay in the context of green chemistry. In these conditions, the structure of obtained polymer is established by 1H NMR and 13C NMR. Infrared spectroscopy (FT-IR) was also used to confirm the structure of PVAc. Thermogravimetric analysis showed that it is thermally stable and starts to degrade at 603 K while differential scanning calorimetry showed that this polymer has a glass transition temperature Tg of 323 K.

  1. Cui H., Du G.: Adv. Polym. Technol., 2012, 31, 130. https://doi.org/10.1002/adv.20244
  2. Amann M., Minge O.: Adv. Polym. Sci., 2012, 245, 137. https://doi.org/10.1007/12_2011_153
  3. Chen J., Zhao X., Zhang L. et al.: J. Polym. Sci. Pol. Chem., 2015, 53, 1430. https://doi.org/10.1002/pola.27582
  4. Karakus G., Polat A., Yenidunya A. et al.: Polym. Int., 2012, 62, 492. https://doi.org/10.1002/pi.4341
  5. Andersen F.: J. Am. Coll. Toxicol., 1996, 15, 166. https://doi.org/10.3109%2F10915819609043794
  6. Abdollahi M., Bigdeli P.: Polym. Bull., 2018, 75, 1823. https://doi.org/10.1007/s00289-017-2130-z
  7. Kattner H., Buback M.: Macromol. Chem. Phys., 2014, 215, 1180. https://doi.org/10.1002/macp.201400095
  8. Pennarun P.-Y.: Pat. EP2552243A1, Publ. Febr. 06, 2013.
  9. https://www.sciencepresse.qc.ca/blogue/2011/08/08/faut-craindre-gomme-ma...
  10. Morin A., Detrembleur C., Jerôme C. et al.: Macromolecules, 2013, 46, 4303. https://doi.org/10.1021/ma400651a
  11. Geng S., Shah F., Liu P. et al.: RSC Adv., 2017, 7, 7483. https://doi.org/10.1039/c6ra28574k
  12. Zhang Y., Pang B., Yang S. et al.: Materials, 2018, 11, 89. https://doi.org/10.3390/ma11010089
  13. Dubininkas M., Buika G.: Chinese J. Polym. Sci., 2013, 31, 346. https://doi.org/10.1007/s10118-013-1220-0
  14. Madras G., Chattopadhyay S.: Polym. Degrad. Stabil., 2001, 73, 33. https://doi.org/10.1016/S0141-3910(01)00064-7
  15. Tewari N., Srivastava A.: Can. J. Chem., 1990, 68, 356. https://doi.org/10.1139/v90-052
  16. Shaffei K., Moustafa A., Hamed A.: Int. J. Polym. Sci., 2009, 2009. https://doi.org/10.1155/2009/731971
  17. http://www.labchem.com/tools/msds/msds/LC20070.pdf
  18. https://pubchem.ncbi.nlm.nih.gov/compound/benzoyl_peroxide#section=Toxicity
  19. https://pubchem.ncbi.nlm.nih.gov/compound/aibn#section=Human-Toxicity-Ex...
  20. https://snpu.fr/un-polyurethane-durable-contre-le-rechauffement-climatique/
  21. Belbachir M., Bensaoula A.: Pat. US 6274527B1, Publ. Aug. 14, 2001.
  22. Benharrats N., Belbachir M., Legrand A. et al.: Clay Miner., 2003, 38, 49. https://doi.org/10.1180/0009855033810078
  23. Breen C., Madejovii J., Komadel P.: Appl. Clay. Sci., 1995, 10, 219. https://doi.org/10.1016/0169-1317(95)00024-X
  24. Ayat M., Belbachir M., Rahmouni A.: Bull. Chem. React. Eng. Catal., 2016, 11, 376. https://doi.org/10.9767/bcrec.11.3.578.376-388
  25. Bensaada N., Ayat M., Meghabar R. et al.: Current. Chem. Lett., 2015, 4, 55. https://doi.org/10.5267/j.ccl.2015.3.002
  26. Rahmouni A., Belbachir M., Ayat M.: Bull. Chem. React. Eng. Catal., 2018, 13, 262. https://doi.org/10.9767/bcrec.13.2.1308.262-274
  27. Kim B., Jung J., Hong S. et al.: Macromolecules, 2002, 35, 1419. https://doi.org/10.1021/ma010497c
  28. Abd El-Ghaffar M., Youssef A., Abd El-Hakim A.: Arab. J. Chem., 2015, 8, 771. https://doi.org/10.1016/j.arabjc.2014.01.001
  29. Nuruzzaman Md., Rahman M., Liu Y. et al.: J. Agric. Food Chem., 2016, 64, 1447. https://doi.org/10.1021/acs.jafc.5b05214
  30. Zenasni M., Benfarhi S., Merlin A. et al.: Nat. Sci., 2012, 4, 856. https://doi.org/10.4236/ns.2012.411114
  31. https://www.chemicalbook.com/SpectrumEN_108-05-4_1HNMR.htm
  32. Itab Y.: Doct. thesis. The University of Lorraine, 2012.
  33. Poljansek I., Fabjan E., Burja K. et al.: Prog. Org. Coat., 2013, 76, 1798. https://doi.org/10.1016/j.porgcoat.2013.05.019
  34. Rimez B., Rahier H., Van Assche G. et al.: Polym. Degrad. Stabil., 2008, 93, 800. https://doi.org/10.1016/j.polymdegradstab.2008.01.010
  35. Daniels W.: Vinyl Acetate Polymers, Encyclopedia of Polymer Science & Engineering, 2nd edn. Wiley Interscience 1990, 402-442.