Properties of the Composites Made of Glauconite and Polyaniline in Aqueous Solutions of Phosphoric Acid

2020;
: pp. 487 - 495
1
Ivan Franko National University of Lviv
2
Ivan Franko National University of Lviv
3
Ivan Franko National University of Lviv
4
Lviv Polytechnic National University
5
Ivan Franko National University of Lviv
6
Ivan Franko National University of Lviv
7
Ivan Franko National University of Lviv

The glauconite-polyaniline composites were prepared through oxidation of aniline using ammonium peroxodisulfate in aqueous solutions of phosphoric acid on the surface of a glauconite powder. Intermolecular interaction between amorphous polyaniline macromolecules and interphase coupling of polyaniline to the glauconite surface was confirmed by X-ray diffraction and FT-IR spectroscopy. Higher concentration of phosphoric acid led to a stronger intermolecular and interphase connection because of H-bonding, and that resulted in higher electric conductivity while a magnetic susceptibility of the composites was not affected. Thermal analysis for the prepared composites confirmed the interfacial interaction between the polyaniline macromolecules and the surface of powdered glauconite.

  1. Gomez-Romero P.: Adv. Mater., 2001, 13, 163. https://doi.org/10.1002/1521-4095(200102)13:3<163::AID-ADMA163>3.0.CO;2-U
  2. Hussain F., Hojjati M., Okamoto M., Gorga R.: J. Composit. Mater., 2006, 40, 1511. https://doi.org/10.1177/0021998306067321
  3. Utracki L., Sepehr M., Boccaleri E.: Polym. Adv. Technol., 2007, 18, 1. https://doi.org/10.1002/pat.852
  4. Mittal V.: Materials, 2009, 2, 992. https://doi.org/10.3390/ma2030992
  5. Makogon V., Yatsyshyn М., Reshetnyak O.: Pratsi Naukovoho Tovarystva im. Shevchenka. Khimichni nauky, 2017, 48, 17.
  6. Malinauskas A.: Polymer, 2001, 42, 3957. https://doi.org/10.1016/S0032-3861(00)00800-4
  7. Soundararajah Q., Karunaratne B., Rajapakse R.: Mater. Chem. Phys., 2009, 113, 850. https://doi.org/10.1016/j.matchemphys.2008.08.055
  8. Liu D., Du X., Meng Y.: Mater. Lett., 2006, 60, 1847. https://doi.org/10.1016/j.matlet.2005.12.033
  9. Ćirić-Marjanović G.: Synth. Met., 2013, 177, 1. https://doi.org/10.1016/j.synthmet.2013.06.004
  10. Matkovs’kyi O., Pavlyshyn V., Slyvko Ye.: Osnovy Mineralogiyi Ukrayiny. Vydav. tsentr LNU im. Ivana Franka, Lviv 2009.
  11. Yatsyshyn М., Grynda Yu., Reshetnyak O. еt al.: XVIth Int. Seminar on Physics and Chemistry of Solids. Lviv, June 2010, 151.
  12. Yatsyshyn М., Іl’kiv Z., Halamay R. et al.: Pat. Ukraine 86632, Publ. Jan. 10, 2014.
  13. Yatsyshyn M., Stasiv N., Makogon V. et al.: Visnyk Lviv Univ. Ser. Chem. 2015, 56, 388.
  14. Makogon V., Yatsyshyn М., Demchenko P.: Visnyk Lviv Univ. Ser. Chem., 2016, 57, 471.
  15. Yatsyshyn М., Makogon V., Demchenko P. et al.: Visnyk Lviv Univ. Ser. Chem., 2015, 56, 360.
  16. Makogon V., Nesterivs’ka S., German N., Yatsyshyn М.: Visnyk Lviv Univ. Ser. Chem., 2019, 60, 360.
  17. Makogon V., Semenyuk Yu., Yatsyshyn M. et al.: Pratsi Naukovoho Tovarystva im. Shevchenka. Khimichni nauky, 2016, 44, 57.
  18. Makogon V., Maksymiv N., Yatsyshyn М. et al.: Visnyk Lviv Univ. Ser. Chem., 2017, 58, 412.
  19. Yatsyshyn М., Lytvyn Yu., Makogon V. et al.: Pratsi Naukovoho Tovarystva im. Shevchenka. Khimichni nauky, 2015, 42, 72.
  20. Yatsyshyn M., Makogon V., Reshetnyak O. et al.: Chem. Chem. Technol., 2016, 10, 429. https://doi.org/10.23939/chcht10.04.429
  21. Yatsyshyn M., Makogon V., Tsiko U., Reshetnyak О.: Pratsi Naukovoho Tovarystva im. Shevchenka. Khimichni nauky, 2019, 53, 92.
  22. Yatsyshyn M., Saldan I., Milanese C. et al.: J. Polym. Environm., 2016, 24, 196. https://doi.org/10.1007/s10924-016-0763-x
  23. Eftekhari A., Afshani R.: J. Polym. Sci. A, 2006, 44, 3304. https://doi.org/10.1002/pola.21422
  24. Parsa A., Ab Ghani S.: Electrochim. Acta, 2009, 54, 2856. https://doi.org/10.1016/j.electacta.2008.11.022
  25. Boara G., Sparpaglione M.: Synth. Met., 1995, 72, 135. https://doi.org/10.1016/0379-6779(94)02337-X
  26. Kulkarni M., Viswanath A., Marimuthu R., Seth T.: Polym. Eng. Sci., 2004, 44, 1676. https://doi.org/10.1002/pen.20167
  27. Blinova N., Stejskal J., Trchová M., Prokeš J.: Polymer, 2006, 47, 42. https://doi.org/10.1016/j.polymer.2005.10.145
  28. Šeděnková I., Trchová M., Blinova N., Stejskal J.: Thin Solid Films, 2006, 515, 1640. https://doi.org/10.1016/j.tsf.2006.05.038
  29. Sonawane Y., Kulkarni M., Kale B., Aiyer R.: Polym. Adv. Technol., 2008, 19, 60. https://doi.org/10.1002/pat.974
  30. Wu J., Tang Q., Li Q., Lin J.: Polymer, 2008, 49, 5262. https://doi.org/10.1016/j.polymer.2008.09.044
  31. Marins J., Soares B.: Synth. Met., 2012, 162, 2087. https://doi.org/10.1016/j.synthmet.2012.10.015
  32. Marins J., Giulieri F., Soares B., Bossis G.: Synth. Met., 2013, 185-186, 9. https://doi.org/10.1016/j.synthmet.2013.09.037
  33. Gu H., Guo J., Zhang X. et al.: J. Phys. Chem., 2013, 117, 6426. https/doi.org/10.1021/jp311471f
  34. Sukhara A., Vereshchagin O., Yatsyshyn М.: Visnyk Lviv Univ. Ser. Chem., 2018, 59, 414. https/doi.org/10.30970/vch.5902.414
  35. Carlin R.: Magnetochemistry. Springer 1986. https://doi.org/10.1007/978-3-642-70733-9
  36. Kulhánková L., Tokarský J., Peikertová P. et al.: J. Phys. Chem. Solids., 2012, 73, 1530. https://doi.org/10.1016/j.jpcs.2011.11.043
  37. Sathiyanarayanan S., Azim S., Venkatachari G.: J. Appl. Polym. Sci., 2008, 107, 2224. https://doi.org/10.1002/app.27254
  38. Shao L., Qiu J., Liu M. et al.: Synth. Met., 2010, 160, 143. https://doi.org/10.1016/j.synthmet.2009.10.022
  39. Chae H.., Zhang W., Piao S., Choi H.: Appl. Clay Sci., 2015, 107, 165. https://doi.org/10.1016/j.clay.2015.01.018
  40. Buckley H., Bevan J., Brown K. et al.: Mineral. Mag., 1978, 42, 373.
  41. Kazim S., Ahmad S., Pfleger J. et al.: J. Mater. Sci., 2012, 47, 420. https://doi.org/10.1007/s10853-011-5815-y
  42. McRae S.: Earth-Sci. Rev., 1972, 8, 397. https://doi.org/10.1016/0012-8252(72)90063-3
  43. Yatsyshyn M., Makogon V., Reshetnyak O., Błażejowski J.: Structure and Thermal Stability of Silica-Glauconite/Polyaniline Composite [in:] Reshetnyak O., Zaikov G. (Eds.), Computational and Experimental Analysis of Functional Materials. Apple Academic Press, CRC Press (Taylor & Francis Group), Toronto, New Jersey 2017, 497. https://doi.org/10.1201/9781315366357
  44. da Oliveira R., Bizeto M., Camilo F.: Carbohyd. Polym., 2018, 199, 84. https://doi.org/10.1016/j.carbpol.2018.06.049
  45. Kolodii M., Vereshchagin O., Yatsyshyn M., Reshetnyak O.: Pratsi Naukovoho Tovarystva im. Shevchenka. Khimichni nauky, 2019, 56, 92.
  46. Bhadra S., Singha N., Khastgir D.: Eur. Polym. J., 2008, 44, 1763. https://doi.org/10.1016/j.eurpolymj.2008.03.010
  47. Doca N., Vlase G., Vlase T. et al.: J. Therm. Anal. Calorim., 2009, 97, 479. https://doi.org/10.1007/s10973-009-0217-y
  48. Yatsyshyn М., Dozhdzhanyk V., Nesterivs’ka S. et al.: Pratsi Naukovoho Tovarystva im. Shevchenka. Khimichni nauky, 2019, 56, 101.
  49. Vohra S., Kumar M., Mittal S., Singla M.: J. Mater. Sci: Mater. Electron., 2013, 24,1354. https://doi.org/10.1007/s10854-012-0933-0
  50. Patil K., Zope P., Patil U. et al.: Bull. Mater. Sci., 2019, 42, 24. https://doi.org/10.1007/s12034-018-1705-0
  51. Kulhánková L., Tokarský J., Matějka V. et al.: Thin Solid Films, 2014, 562, 319. https://doi.org/10.1016/j.tsf.2014.05.006
  52. Saldan I., Stetsiv Y., Makogon V. et al.: Chem. Chem. Technol., 2019, 13, 85. https://doi.org/10.23939/chcht13.01