Synthesis, Structure and Properties of the Grafted Peptidomimetic Polymer Brushes Based on Poly(N-methacryloyl-L-proline)

2021;
: pp. 26 - 32
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

A new approach to synthesis at the aminated glass surface of novel biocompatible polymeric nanolayers consisting of poly(N-methacryloyl-L-proline) brushes has been developed. Formation of the polymer nanolayers has been realized in several stages. At the first stage, the glass surface has been modified by aminosilane (APTEC), afterwards monolayer of the peroxide-containing initiator (PI) based on pyromellitic acid has been tethered to this aminated surface. The immobilized PI has been used further for initiation of the grafting "from the surface" polymerization of N-methacryloyl-L-proline for obtaining of the peptidomimetic polymer brushes. Features of the reactions, as well as optimal conditions for performing the process are highlighted in this work. Presented here poly(N-methacryloyl-L-proline) grafted brush coatings are promising material for numerous applications in nanomedicine, especially for production of implants and systems of the controlled interaction with proteins and cells.

  1. Motornov M., Roiter Y., Tokarev I., Minko S.: Prog. Polym. Sci., 2010, 35, 174. https://doi.org/10.1016/j.progpolymsci.2009.10.004
  2. Tokarev I., Gopishetty V., Zhou J. et al.: Appl. Mater. Interfaces, 2009, 1, 532. https://doi.org/10.1021/am800251a
  3. Lee H., Pietrasik J., Sheiko S., Matyjaszewski K.: Prog. Polym. Sci., 2010, 35, 24. https://doi.org/10.1016/j.progpolymsci.2009.11.002
  4. Cole M., Voelcker N., Thissen H., Griesser H.: Biomaterials, 2009, 30, 1827. https://doi.org/10.1016/j.biomaterials.2008.12.026
  5. Chen T., Ferris R., Zhang J. et al.: Prog. Polym. Sci., 2010, 35, 94. https://doi.org/10.1016/j.progpolymsci.2009.11.004
  6. Synytska A., Svetushkina E., Puretskiy N. et al.: Soft Matter, 2010, 6, 5907. https://doi.org/10.1039/C0SM00414F
  7. Luzinov I., Minko S., Tsukruk V.: Soft Matter, 2008, 4, 714. https://doi.org/10.1039/B718999K
  8. Fournier D., Hoogenboom R., Thijs H. et al.: Macromolecules, 2007, 40, 915. https://doi.org/10.1021/ma062199r
  9. Chen G., Hoffman A.: Nature, 1995, 373, 49. https://doi.org/10.1038/373049a0
  10. Lee H., Pietrasik J., Matyjaszewski K.: Macromolecules, 2006, 39, 3914. https://doi.org/10.1021/ma060350r
  11. Zhang J., Peppas N.: Macromolecules, 2000, 33, 102. https://doi.org/10.1021/ma991398q
  12. Garcia A., Marquez M., Cai T. et al.: Langmuir, 2007, 23, 224. https://doi.org/10.1021/la061632n
  13. Burkert S., Bittrich E., Kuntzsch M. et al.: Langmuir, 2010, 26, 1786. https://doi.org/10.1021/la902505q
  14. Mori H., Kato I., Endo T.: Macromolecules, 2009, 42, 4985. https://doi.org/10.1021/ma900706s
  15. Mori H., Iwaya H., Nagai A., Endo T.: Chem. Commun., 2005, 38, 4872. https://doi.org/10.1039/B509212D
  16.  Mori H., Iwaya H., Endo T.: React. Funct. Polym., 2007, 67, 916. https://doi.org/10.1016/j.reactfunctpolym.2007.05.016
  17. Mori H., Iwaya H., Endo T.: Macromol. Chem. Phys, 2007, 208, 1908. https://doi.org/10.1021/ma902002b
  18. Mori H., Kato I., Matsuyama M., Endo T.: Macromolecules , 2008, 41, 5604. https://doi.org/10.1021/ma800181h
  19. Sanda F., Endo T.: Macromol. Chem. Phys., 1999, 200, 2651. https://doi.org/10.1002/(SICI)1521-3935(19991201)200:12<2651::AID-MACP2651>3.0.CO;2-P
  20. Mori H., Endo T.: Macromol. Rapid Commun., 2012, 33, 1090. https://doi.org/10.1021/ma0509558
  21. Chung I., Britt P., Xie D. et al.: Chem. Commun., 2005, 28, 1046. https://doi.org/10.1039/B416591H
  22. Liu Z., Hu J., Sun J. et al.: J. Polym. Sci. A, 2010, 48, 3573. https://doi.org/10.1002/pola.24137
  23. Katakai R., Yoshida M., Hasegawa S. et al.: Macromolecules, 1996, 29, 1065. https://doi.org/10.1021/ma951094d
  24. Katakai R., Saito K., Sorimachi M et al.: Macromolecules, 1998, 31, 3383. https://doi.org/10.1021/ma971727j
  25. Raczkowska J., Ohar M., Stetsyshyn Y. et al.: Colloid. Surface B, 2014, 118, 270. https://doi.org/10.1016/j.colsurfb.2014.03.049
  26. Stetsyshyn Y., Raczkowska J., Budkowski A. et al.: Langmuir, 2016, 32, 11029. https://doi.org/10.1021/acs.langmuir.6b02946
  27. Raczkowska J., Stetsyshyn Y., Awsiuk K. et al.: Appl. Surf. Sci., 2017, 407, 546. https://doi.org/10.1016/j.apsusc.2017.03.001
  28. Riddick J.,. Bunger W, Sakano T., Weissenerger A.: Organic Solvents: Physical Properties and Methods of Purification. Wiley, New York 1986.
  29. Milas N., Surgenor D.: Am J. Chem. Soc, 1946, 68, 205. https://doi.org/10.1021/ja01206a017
  30. Bentolila A., Vlodavsky I., Ishai-Michaeli R. et al.: J. Med. Chem., 2000, 43, 2591. https://doi.org/10.1021/jm000089j
  31. Bayer O., Houben J., Muller E.: Methoden der organischen Chemie (Houben-Weyl), G. Thieme, Stuttgart, 1952, 8, 464.
  32. Wang X., Gan H., Zhang M., Sun T.: Langmuir, 2012, 28, 2791. https://doi.org/10.1021/la204143g
  33. Cassie A.: Discuss. Faraday Soc, 1948, 3, 11. https://doi.org/10.1039/DF9480300011
  34. Swain P., Lipowsky R.: Langmuir, 1998, 14, 6772. https://doi.org/10.1021/la980602k
  35.  Bootsma G., Meyer F.: Surf. Sci, 1969, 14, 52. https://doi.org/10.1016/0039-6028(69)90045-4
  36. Voronov S., Varvarenko S.: Peroksydovani Makromolekuly na Mezhi Rozdilu Faz. Vyd-vo LPNU, Lviv 2011.