Correlation between Diameter of Microorganisms and Efficiency of Microorganisms Destruction under Gas/Cavitation Conditions

2021;
: pp. 98 - 104
Authors:
1
Lviv Polytechnic National University

The values of еffective rate constants of microorganisms destruction (kd) were compared, depending on the diameter of cells and gas nature bubbling under cavitation conditions. The efficiency of cell destruction under Ar/US is larger by 2–2.5 times compared to He/US, O2/US and CO2/US. Yeast cells were destroyed faster than bacteria (kd (yeast cells) >> kd (bacteria cells)) that is explained by the cells size. The cell stability under cavitational conditions is reversely proportional to the cell diameter. Considering the cell sizes, the presented dependencies of kd = ƒ(dcells) can be successfully used as a standard not only for qualitative determination, but also for evaluating the efficiency of cavitation treatment of water in the presence of O2, CO2, Ar and He.

  1. Sidenko T.: Vodopostachannya ta Vodovidvedennya: Anatovanyy Bibliohrafichnyy Pokazhchyk. Naukova biblioteka CHNTU, Chernihiv 2017.
  2. Ayrapetyan T.: Tekhnolohiya Ochystky Promyslovykh Stichnykh Vod.: KHNUMH im. O. M. Beketova, Kharkiv 2017.
  3. Zahorodnyuk K.: Vodopostachannya ta Vodovidvedennya, 2010, 2, 36.
  4. Strykalenko T.: Vodopostachannya ta Vodovidvedennya, 2009, 1, 35.
  5. Bhavya M., Umesh Hebbar H.: Ultrasonics Sonochem., 2019, 57, 108. https://doi.org/10.1016/j.ultsonch.2019.05.002
  6. Iorio M., Bevilacqua A., Corbo M. et al.: Ultrasonics Sonochem., 2019, 52, 477. https://doi.org/10.1016/j.ultsonch.2018.12.026
  7. Kong Y., Peng Y., Zhang Zh. et al.: Ultrasonics Sonochem., 2019, 56, 447. https://doi.org/10.1016/j.ultsonch.2019.04.017
  8. Li Y., Shi X., Zhang Zh. et al.: Ultrasonics Sonochem., 2019, 55, 232. https://doi.org/10.1016/j.ultsonch.2019.01.022
  9. Carrillo-Lopez L., Huerta-Jimenez M., Garcia-Galicia I. et al.: Ultrasonics Sonochem., 2019, 58, 104. https://doi.org/10.1016/j.ultsonch.2019.05.025
  10. Park J., Son Y., Lee W.: Ultrasonics Sonochem., 2019, 55, 8. https://doi.org/10.1016/j.ultsonch.2019.03.007
  11. Palanisamy N., Seale B., Turner A. et al.: Ultrasonics Sonochem., 2019, 51, 325. https://doi.org/10.1016/j.ultsonch.2018.09.025
  12. Znak Z., Zin O.: Chem. Chem. Technol., 2017, 11, 517. https://doi.org/10.23939/chcht11.04.517
  13. Zhou X., Li Z., Lan J. et al.: Ultrasonics Sonochem., 2017, 35, 471. https://doi.org/10.1016/j.ultsonch.2016.10.028
  14. Shin G.-A., Sobsey M.: Water Research, 2008, 42, 4562. https://doi.org/10.1016/j.watres.2008.08.001
  15. Fei G., Lizhong Z., Jing W.: Desalination, 2008, 225, 156. https://doi.org/10.1016/j.desal.2007.03.016
  16. Lukyanchuk S.: Environment & Health, 2009, 3, 31.
  17. Potapchenko N.: Voda i Vodoochystnye Tekhnolohyy, 2013, 1, 70.
  18. Miranda A., Lepretti M., Rizzo L. et al.: Sci. Total Environm., 2016, 554-555, 1. https://doi.org/10.1016/j.scitotenv.2016.02.189
  19. Martinelli M., Giovannangeli F., Rotunno S. et al.: J. Prev. Med. Hyg., 2017, 58, E48.
  20. Zheng J., Su Ch., Zhou J. et al.: Chem. Eng. J., 2017, 317, 309. https://doi.org/10.1016/j.cej.2017.02.076
  21. Zyara A., Torvinen E., Veijalainen A.-M. et al.: Water, 2016, 8, 130. https://doi.org/10.3390/w8040130
  22. Wang J., Wang Zh., Carolina L. et al.: Ultrasonics Sonochem., 2019, 55, 273. https://doi.org/10.1016/j.ultsonch.2019.01.017
  23. Kondratovych O., Koval I., Kyslenko V.: Chem. Chem. Technol., 2013, 7, 185. https://doi.org/10.23939/chcht07.02.185
  24. Ojha K., Mason T., O’Donnell C. et al.: Ultrasonics Sonochem., 2017, 34, 410. https://doi.org/10.1016/j.ultsonch.2016.06.001
  25. Al-Hashimi A., Mason T., Joyce E. et al.: Environ. Sci. Technol., 2015, 49, 11697. https://doi.org/10.1021/es5045437
  26. Romenskiy A., Kazakov V., Grin G.: Ultrazvuk v Heterogennom Katalize. Severodonetsk 2006.
  27. Koval I.: Int. Symposium "The Environment and the Industry", 20-21 September 2018, 362. https://doi.org/10.21698/simi.2018.fp43
  28. Shevchuk L., Strogan O., Koval I.: Chem. Chem. Technol., 2012, 6, 219. https://doi.org/10.23939/chcht06.02.219
  29. Koval I., Falyk T.:15th Int. Scientific-Practical Conf. "Resources of Natural Waters in Carpathian Region" (Problems of protection and rational exploitation), Ukraine, Lviv 2016, 92.
  30. Dehghani M., Mahvi A., Jahed G. et al.: J. Zhejiang Univ. Sci., 2007, 7, 493. https://doi.org/10.1631/jzus.2007.B0493
  31. Suslick K. (Ed.): Ultrasound: Its Chemical, Physical, and Biological Effects. VCH Publishers, New York 1988.
  32. Koval I., KіslenkoV., Shevchuk L. et al.: Chem. Chem. Technol., 2011, 5, 463.