Сhecking the possibilities of the classic technology of chemical metalization of polymer granules

2023;
: 148-153
1
Lviv Polytechnic National University
2
Technical University of Košice, Department of CAx Technologies
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

The possibility of obtaining metallized granules of high-tonnage polymers using classical metallization technology was studied. It is shown that this technology is not effective during the metallization of polyethylene and polypropylene. Certain positive points during metallization were achieved only in the case of polyvinyl chloride granules. It was established that the treatment of granules with etching agents of different nature does not lead to a significant change in surface properties, which can explain the low efficiency of classical technology during the metallization of polyethylene, polypropylene and polyvinyl chloride granules.

1.Wang L., YangC., WangX., Shen J., Sun W., Wang J., Yang G., Cheng Y., Wang Z. (2023). Advances in polymers and composite dielectrics for thermal transport and high-temperature applications. Composites Part A: Applied Science and Manufacturing, 164, 107320. https://doi.org/10.1016/j.compositesa.2022.107320
https://doi.org/10.1016/j.compositesa.2022.107320
2.Kim K., Ju H., Kim J. (2016). Filler orientation of boron nitride composite via external electric field for thermal conductivity enhancement. Ceramics International, 42:7, 8657-8663. https://doi.org/10.1016/j.ceramint.2016.02.098
https://doi.org/10.1016/j.ceramint.2016.02.098
3. WeiZ., XieW., GeB., ZhangZ., YangW., XiaH., WangB., JinH., GaoN., ShiZ. (2020). Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements. Composites Science and Technology, 199, 108304. https://doi.org/10.1016/j.compscitech.2020.108304
https://doi.org/10.1016/j.compscitech.2020.108304
4.Guo H., Hu B., Wang Q., Liu J., Li M., Li B. (2023). Horizontally aligned graphene/silver heterostructure for anisotropically highly thermoconductive polymer-based composites by stress-induced assembly. Applied Surface Science, 615, 156404. https://doi.org/10.1016/j.apsusc.2023.156404
https://doi.org/10.1016/j.apsusc.2023.156404
5. DharaniKumarS., AravindhM., ManojV.K., MadhumithraC., KaviyaP., YaswanthS. (2023). Fracture toughness of bio-fiber reinforced polymer composites- a review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.01.334
https://doi.org/10.1016/j.matpr.2023.01.334
6.ArunRamnath R., Gautham V., Mavinkere Rangappa Sanjay, Suchart Siengchin (2023). 5 - Physical modification of cellulose fiber surfaces, Ed: R. ArunRamnath, Mavinkere Rangappa Sanjay, Suchart Siengchin, Vincenzo Fiore. In Woodhead Publishing Series in Composites Science and Engineering, Cellulose Fibre Reinforced Composites, Woodhead Publishing. https://doi.org/10.1016/B978-0-323-90125-3.00016-1
https://doi.org/10.1016/B978-0-323-90125-3.00016-1
7.Yadav V., Singh S., Chaudhary N., Garg M.P., Sharma S., Kumar A., Li C., Eldin E.M. (2023). Dry sliding wear characteristics of natural fibre reinforced poly-lactic acid composites for engineering applications: Fabrication, properties and characterizations. Journal of Materials Research and Technology, 23,1189-1203. https://doi.org/10.1016/j.jmrt.2023.01.006
https://doi.org/10.1016/j.jmrt.2023.01.006
8.TanQ., LiF., Liu L., Liu Y., Leng J. (2023). Effects of vacuum thermal cycling, ultraviolet radiation and atomic oxygen on the mechanical properties of carbon fiber/epoxy shape memory polymer composite. Polymer Testing,118,107915. https://doi.org/10.1016/j.polymertesting.2022.107915
https://doi.org/10.1016/j.polymertesting.2022.107915
9.Jithin K.F., Thankachan T.P., Mathew J., Mervin J.T., Kurian J. (2023). Investigations on mechanical properties of wood composite for sustainable manufacturing. Materials Today: Proceedings, 72:6, 3111-3115. https://doi.org/10.1016/j.matpr.2022.09.428
https://doi.org/10.1016/j.matpr.2022.09.428
10. UpadhyayP., RajputV., RajputP.S., MishraV., KhanI.A., JhaA., AgrawalA. (2023). Physical, mechanical and sliding wear behaviour of epoxy composites filled with micro-sized marble dust composites. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.01.276
https://doi.org/10.1016/j.matpr.2023.01.276
11. FuX., LinJ., LiangZ., YaoR., WuW., Fang Z., Zou W.,Wu Z., Ning H., Peng J. (2023). Graphene oxide as a promising nanofiller for polymer composite. Surfaces and Interfaces, 37, 102747. https://doi.org/10.1016/j.surfin.2023.102747
https://doi.org/10.1016/j.surfin.2023.102747
12. BenltifaM., BrahmiC., DumurF., LimousyL., BousselmiL., LalevéeJ. (2022). A comparison study of the photocatalytic efficiency of different developed photocatalysts/polymer composites. European Polymer Journal, 181, 111660. https://doi.org/10.1016/j.eurpolymj.2022.111660
https://doi.org/10.1016/j.eurpolymj.2022.111660
13. KimK.J., RheeM.H., ChoiBI. etal.(2009). Development of application technique of aluminum sandwich sheets for automotive hood. Int. J. Precis. Eng. Manuf.10, 71-75. https://doi.org/10.1007/s12541-009-0073-5
https://doi.org/10.1007/s12541-009-0073-5
14. Sun G., Chen D., Zhu G., Li Q. (2022). Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook. Thin-Walled Structures, 172, 108760. https://doi.org/10.1016/j.tws.2021.108760
https://doi.org/10.1016/j.tws.2021.108760
15. PokkallaD.K., HassenA.A., NuttallD., TsiamisN., RencheckM.L., KumarV., NandwanaP., JoslinC.B., BlanchardP., TamhankarS.L., MaloneyP., KuncV., KimS. (2023). A novel additive manufacturing compression overmolding process for hybrid metal polymer composite structures. Additive Manufacturing Letters, 5, 100128. https://doi.org/10.1016/j.addlet.2023.100128
https://doi.org/10.1016/j.addlet.2023.100128
16. Kucherenko А.N., Mankevych S.О., Kuznetsova М.Ya., Moravskyi V.S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3:2, 140-145. https://doi.org/10.23939/ctas2020.02.140
https://doi.org/10.23939/ctas2020.02.140
17. Kucherenko А., Dovha Y., Kuznetsova M., Moravskyi V. (2022). Analysis of processes which occur during the destruction of a copper shell formed on polyethylene granules.Chemistry, technology and application of substances, 5:1, 186-192. https://doi.org/10.23939/ctas2022.01.186
https://doi.org/10.23939/ctas2022.01.186
18. MoravskyiV., KucherenkoA., KuznetsovaM., DulebovaL., SpišákE. (2022). Obtainmentandcharacterizationofmetal-coatedpolyethylenegranulesasabasisforthedevelopmentofheatstoragesystems. Polymers, 14:1, 218. https://doi.org/10.3390/polym14010218
https://doi.org/10.3390/polym14010218
19. Moravskyi V., Kucherenko A., Kuznetsova M., Dulebova L., Spišák E., Majerníková J. (2020). Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials, 13, 2856 https://doi.org/10.3390/ma13122856
https://doi.org/10.3390/ma13122856