ANALYSIS OF PROCESSES WHICH OCCUR DURING THE DESTRUCTION OF A COPPER SHELL ON POLYETHYLENE GRANULES

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

The geometric dimensions of the copper shell formed by chemical deposition on a spherical polyethylene granule were calculated. It is shown that the main factor determining the thickness of the formed copper layer is the initial size of the polyethylene granule. The processes of destruction of the copper shell formed on the polyethylene granule during thermal expansion of the polymer are considered. The values of the limit temperatures in which the copper shell still retains its integrity depending on its thickness are calculated.

1. Misiura, A.I., Mamunya, Ye.P., Kulish, M.P. (2020). Metal-Filled Epoxy Composites: Mechanical Properties and Electrical/Thermal Conductivity. Journal of Macromolecular Science, Part B, 59:2, 121-136. https://doi.org/10.1080/00222348.2019.1695820.

2. Nayak, S.K.,  Mohanty, D.(2020). Silver nanoparticles decorated α-alumina as a hybrid filler to fabricate epoxy-based thermal conductive hybrid composite for electronics packaging application. Journal of Adhesion Science and Technology, 34:14, 1507-1525. https://doi.org/10.1080/01694243.2020.1714138.

3. Roldughin, V.I., Vysotskii, V.V. (2000). Percolation properties of metal-filled polymer films, structure and mechanisms of conductivity. Progress in Organic Coatings, 39, 2-4, 81-100. https://doi.org/10.1016/S0300-9440(00)00140-5.

4. Zaaba, N.F., Ismail, H., Saeed, A.M. (2021). A Review: Metal Filled Thermoplastic Composites. Polymer-Plastics Technology and Materials, 60:10, 1033-1050. https://doi.org/10.1080/25740881.2021.1882489.

5. Vadivelu, M.A., Kumar, C.R., Joshi, G.M. (2016). Polymer composites for thermal management: a review. Composite Interfaces, 23:9, 847-872. https://doi.org/10.1080/09276440.2016.1176853.

6. Mamunya, Ye.P., Muzychenko, Yu.V., Pissis, P., Lebedev, E.V., Shut, M.I. (2001). Processing, Structure, And Electrical Properties Of Metal-Filled Polymers. Journal of Macromolecular Science, Part B, 40:3-4, 591-602. https://doi.org/10.1081/MB-100106179.

7. Al-Attabi, N.Y., Adhikari, R., Cass, P., Bown, M., Gunatillake, P.A., Malherbe, F., Yu, A. (2019). Silver nanowire as an efficient filler for high conductive polyurethane composites. Materials Science and Technology, 35:4, 462-468. https://doi.org/10.1080/02670836.2019.1570441.

8. Berezhnyy, B., Grytsenko, O., Suberlyak, O., Dulebová, L., Fechan, A. (2021). Synergistic effects during the obtaining of polyvinylpyrrolidone nickel-filled copolymers. Molecular Crystals and Liquid Crystals, 716:1, 50-60. https://doi.org/10.1080/15421406.2020.1859695.

9. Marshall, D.W. (2000). Copper-based Conductive Polymers: A New Concept in Conductive Resins. The Journal of Adhesion, 74:1-4, 301-315. https://doi.org/10.1080/00218460008034533.

10. Huang, Y., Ellingford, C., Bowen, C., McNally, T., Wu, D., Wan, C. (2020). Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites. International Materials Reviews, 65:3, 129-163. https://doi.org/10.1080/09506608.2019.1582180.

11. Tawansi, A., Zidan, H.M. (1991). Tunnelling and Thermally Stimulated Phenomena in Highly Filled PMMA Composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 15:2, 77-83. https://doi.org/10.1080/00914039108031524.

12. Kucherenko A., Nikitchuk О., Dulebova L., Moravskyi V. (2021). Activation of polyethylene granules by finely dispersed zinc. Chemistry, technology and application of substances, 4:1, 191-197. https://doi.org/10.23939/ctas2021.01.191.

13. Kucherenko А.N., Mankevych S.О., Kuznetsova М.Ya., Moravskyi V.S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3:2, 140-145. https://doi.org/10.23939/ctas2020.02.140.

14. Heinle, M., Drummer, D. (2015). Temperature-dependent coefficient of thermal expansion (CTE) of injection molded, short-glass-fiber-reinforced polymers. Polym. Eng. Sci., 55, 2661-2668. https://doi.org/10.1002/pen.24159

15. Shahapov, V., Yumahulova, Y. (2013). Povysheniye davleniya zhidkosti v zamknutom obyeme pri teplovom vozdeystvii cherez stenki. Teplofizika i aeromekhanika, 20(4), 505-512.

16. Zaslavskiy B.V. (1986). Kratkiy kurs soprotivleniya materialov. Moskva: Mashinostroyeniye.

17. Shalkauskas M., Vashkyalis A. (1985). Chemical metallization of plastics. Leningrad: Khimiya.

18. Moravskyi V., Dziaman I., Suberliak S., Grytsenko O., Kuznetsova M. (2017). Features of the production of metal-filled composites by metallization of polymeric raw materials, IEEE 7th Inter. Conf. Nanomaterials: Applications and Properties (NAP-2017), Sumy: Sumy State University.

19. Moravskyi, W., Kucherenko, A., Yakushyk, I., Dulebova, L., Garbacz, T. (2018). The Technology Of Metallization Of Granulated Polymer Raw Materials. Visnyk natsionalnoho universytetu "Lvivska politekhnika". Serie: Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 886, 205-212.

20. Tyumentsev, A.N., Panin, V.Ye., Ditenberg, I.A., Pinzhin, YU.P., Korotayev, A.D., Derevyagina, L.S., Shuba, YA.V., Valiyev, R.Z. (2001). Osobennosti plasticheskoy deformatsii ul'tramelkozernistoy medi pri raznykh temperaturakh. Fizicheskaya mezomekhanika, 4(6), 77-85.

21. Bobylev A.V. (1987). Mekhanicheskiye i tekhnologicheskiye svoystva metallov: Spravochnik. Moskva: Metallurgiya.