Numerical studies of a Timoshenko system with the second sound

2024;
: pp. 911–922
https://doi.org/10.23939/mmc2024.04.911
Received: December 18, 2023
Accepted: May 17, 2024

Smouk A., Radid A. Numerical studies of a Timoshenko system with the second sound. Mathematical Modeling and Computing. Vol. 11, No. 4, pp. 911–922 (2024)

Authors:
1
Department of Mathematics and Informatics, Hassan II University, FSAC, Fundamental and Applied Mathematics Laboratory, Casablanca, Morocco
2
Department of Mathematics and Informatics, Hassan II University, FSAC, Fundamental and Applied Mathematics Laboratory, Casablanca, Morocco

Timoshenko's problem is not a recent problem and many articles exist concerning his study.  New physical problems appear and require a good mathematical understanding of the behavior of this phenomenon.  Our contribution will consist in studying the numerical stability of a Timoshenko system with second sound.  We introduce a finite element approximation and prove that the associated discrete energy decreases and we establish a priori error estimates.  Finally, some numerical simulations are obtained.

  1. Timoshenko S. P.  On the correction for shear of the differential equation for transverse vibrations of prismatic bars.  Philosophical Magazine.  41 (6), 744–746 (1921).
  2. Suiker A., de Borst R., Esveld C.  Critical behaviour of a Timoshenko beam-half plane system under a moving load.  Archive of Applied Mechanics.  68, 158–168 (1998).
  3. Soufyane A.  Stabilisation de la poutre de Timoshenko.  Comptes Rendus de l'Académie des Sciences – Series I – Mathematics.  328 (8), 731–734 (1999).
  4. Metrikine A. V., Verichev S. N.  Instability of vibrations of a moving two-mass oscillator on a flexibly supported Timoshenko beam.  Archive of Applied Mechanics.  71 (9), 613–624 (2001).
  5. Muñoz Rivera J. E., Racke R.  Timoshenko systems with indefinite damping.  Journal of Mathematical Analysis and Applications.  341 (2), 1068–1083 (2008).
  6. Soufyane A., Wehbe A.  Uniform stabilization for the Timoshenko beam by a locally distributed damping.  Electronic Journal of Differential Equations.  2003, 29 (2003).
  7. Fernández Sare H. D., Racke R.  On the stability of damped Timoshenko systems: Cattaneo versus Fourier law.  Archive for Rational Mechanics and Analysis.  194 (1), 221–251 (2009).
  8. Muñoz Rivera J. E., Racke R.  Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability.  Journal of Mathematical Analysis and Applications.  276 (1), 248–276 (2002).
  9. Santos M. L., Almeida Júnior D. S., Muñoz Rivera J. E.  Thestability number of the Timoshenko system with second sound.  Journal of Differential Equations.  253 (9), 2715–2733 (2012).
  10. Lasiecka I., Tataru D.  Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping.  Differential and Integral Equations.  6 (3), 507–533 (1993).
  11. Ayadi M. A., Bchatnia A., Hamouda M., Messaoudi S.  General decay in a Timoshenko-type system with thermoelasticity with second sound.  Advances Nonlinear Analysis.  4 (4), 263–284 (2015).
  12. Andrews K. T., Fernández J. R., Shillor M.  Numerical analysis of dynamic thermoviscoelastic contact with damage of a rod.  IMA Journal of Applied Mathematics.  70 (6), 768–795 (2005).
  13. Campo M., Fernández J. R., Kuttler K. L., Shillor M., Viaño J. M.  Numerical analysis and simulations of a dynamic frictionless contact problem with damage.  Computer Methods in Applied Mechanics and Engineering.  196 (1), 476–488 (2006).
  14. Ciarlet P. G.  The Finite Element Method for Elliptic Problems.  Classics in Applied Mathematics (2002).
  15. Han W., Shillor M., Sofonea M.  Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage.  Journal of Computational and Applied Mathematics.  137 (2), 377–398 (2001).