TELECHELIC OLIGOPEROXIDES WITH POLYETHYLENE GLYCOL SIDE CHAINS AND SURFACTANTS WITH BLOCK/COMBLIKE STRUCTURE ON THEIR BASED

2018;
: 213-219
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

Currently, polymers with special properties are widely used in various areas, including medicine and electronic. However, specific of usage of such materials is determined by their structure. In this case, the development of novel polymeric macromolecules with controlled structure and studying of peculiarities their synthesis is an actual task for today. In this paper surface active block/comb-like copolymers were obtained via free radical polymerization by two-step polymerization. Firstly, telechelic oligoperoxides (TOs) with polyethylene glycol (PEG) side chains were received via radical polymerization of PEG-contained macromers in presence of functional peroxide-contained chain transfer agent – monoperoxine (MP) which possessing weakly inhibiting action which decreases polymerization rate value and lowers TOs molecular weight at the increase of MP concentration. It was shown that activity of polymeric radicals increases with the length of macromer PEG substituent at constant concentration of MP. The number of peroxide-contained macromolecules was incremented as a result. Order of reaction for such systems with respect to initiator was decreased that could be explained by inefficient consumption of initiator in the reaction mixture (streric and diffusion factors). Secondary, the terminal peroxide group was provided the usage of synthesized copolymers as macroinitiators in polymerization of monomers with low molecular weight, in particular hyrophilic N-vinylpyrrolidone (NVP). Kinetic parameters of NVP polymerization initiated by TOs in presence of epoxide contained chain transfer agent were obeyed regularities of weakly inhibiting radical polymerization. The structure of comb-like and block/comb-like copolymers was confirmed by elemental and functional analysis, spectral (IR spectra) and chromatographic (gas-liquid chromatography) methods. Comb-like oligoperoxide macroinitiator and block/comb-like copolymer based on it are surface active substances forming micelle-like structures of different size in water solutions. The presence of functional epoxide group in structure of diblock-copolymer make it possible to covalent bind of amino-contained natural macromolecules, such as peptides, oligonucleotides or aminoacids.

1. Knop K., Hoogenboom R., Fischer D., U. D. Schubert. Poly(ethylene glycol) in Drug Delivery:
Pros and Cons as Well as Potential Alternatives // Angewandte Chemie. – 2010. – Vol. 49 (36). – P. 6288–
6308. 2. Lutz J. F. Polymerization of oligo(ethylene glycol) (meth)acrylates: toward new generation of
smart biocompatible materials // J. POLYM. SCI. PART A: POLYM. CHEM. – 2008. – Vol. 46 (11). –
P. 3459–3470. 3. Liu J., Ran Q., Miao C., Zhou D. Synthesis and characterization of comb-like copolymer
dispersant with methoxy poly (ethylene oxide) side chains // Polymer-Plastics Technology and
Engineering. – 2011. – Vol. 50. – P. 59–66. 4. Neugebauer D. Graft copolymers with poly(ethylene oxide)
segments // Polymer International. – 2007. – Vol. 56 (12). – P. 1469 – 1498. 5. Lutz J. F., Ouchi M.,
Liu D. R., Sawamoto M. Sequence-Controlled Polymers // Science. – 2013. – Vol. 341. – P. 1238149.
6. Tizzotti M., Charlot A., Fleury E., Stenzel M., Bernard J. Modification of Polysaccharides Through
Controlled/Living Radical Polymerization Grafting–Towards the Generation of High Performance
Hybrids // Macromolecular Rapid Communication. – 2010. – Vol. 31. – P. 1751–1772. 7. Вацулик П.
Химия мономеров. – М.: Издательство иностранной литературы, 1960. – С. 735. 8. Dikyy M. A.
Synthesis and some rections of peroxide monomers – derivatives of isopropenyl benzene/ M. A. Dikyy, et
al. // Russ. J. Org. Chem. – 1981. – 17. – Р. 353. 9. Синтез нових функціональних похідних кумінового
спирту / Кінаш Н. І., Паюк О. Л., Долинська Л. В. та ін. // Вісник НУ “Львівська політехніка”
“Хімія, технологія речовин та їх застосування”. – 2017. – № 863. – С. 40–45. 10. Кантов М.
Фракционирование полимеров / М. Кантов ; пер. с англ. – М. : Мир, 1971. – 444 с. 11. Васильев В. П.
Гомолитический распад алкеналкильного пероксидного мономера и его полимеров: дис. ... канд. хим.
наук: 02.00.03, 02.00.04 / В. П. Васильев. – Львов, 1990. – 156 с. 12. Оудиан Дж. Основы химии
полимеров. – М. : Мир, 1974. – 614 с. 13. Торопцева А. М. Лабораторный практикум по химии и
технологии высокомолекулярных соединений / А. М. Торопцева, К. В. Белогородская,
В. М. Бондаренко. – Л.: Химия, 1972. – с. 416. 14. Fainerman and V. and Mille R.: [in:] Miller R. and
Liggieri L. (Eds.), Bubble and Drop Interfaces in Progress in Colloid and Interface Science, Vol. 2. Brill. –
Leiden 2009. 15. Скорохода Т. В., Лобаз В. Р., Заіченко О. С. Синтез та властивості нових
телехелатних олігопероксидів – ініціаторів радикальної полімеризації // Вісник НУ “Львівська
політехніка” “Хімія, технологія речовин та їх застосування”. – 2008. – №609. – С. 352 – 355.