Online insulation monitoring system for high voltage bushings 330 kV

2022;
: pp. 15 - 23
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University

Insulating structures of high-voltage electrical equipment are exposed to electromagnetic fields, atmospheric factors, natural aging processes and more. The consequence of this is the deterioration of their dielectric properties, damage to the insulating structure, which often leads to explosions, fires, injuries to staff. Therefore, the use of informative, reliable and safe diagnostic systems is an important operational task. The main disadvantages of existing electrical insulation diagnostics systems, especially online diagnostics, are the significant impact on the results of measurements of electromagnetic interference of electrical installations. The article considers the system of online monitoring of insulation of high-voltage bushings 330 kV, the principle of which is based on direct current and offers the concept of building such a diagnostic system. A digital model of 330 kV high-voltage bushing insulation has been developed, which reproduces the processes in its paper-oil insulation construction under the influence of the main operational factors.

Deterioration of high-voltage bushing insulation, influence of temperature and humidity change, partial overlaps between additional leveling plates are investigated. The basic diagnostic parameter of control of a condition of isolation of high-voltage bushing is chosen. This is a DC voltage across the reference resistor. Monitoring the voltage  on the reference  resistor  will allow timely and reliable assessment of deterioration of the insulation characteristics of the bushing and prevent the development of accidents. The use of direct current eliminates the influence of parasitic currents and interference of the existing electrical installation on the measurement results. The structural scheme of the system of online monitoring of insulation of high-voltage bushings of 330 kV is offered.

  1. Shutenko O. V., Zahaynova A. A. Dyahnostyka sostoyanyya vysokovolʹtnykh maslonapolnennykh vvodov na osnove analy za dynamyky yzmenenyya pokazateley yzolyatsyy vo vremeny. Visnyk Natsionalʹnoho tekhnichnoho universytetu “KHPI”. Ser.: Tekhnika ta elektrofizyka vysokykh napruh: zb. nauk. pr. Kharkiv: NTU “KHPI”. 2019. No. 18 (1343). C. 62–76. URL: http://repository.kpi.kharkov.ua/handle/KhPI-Press/42736.
  2. Rubanenko O. Ye., Humenyuk O. I. Vysokovolʹtni vvody. Konstruktsiya, ekspluatatsiya, diahnostyka i remont. Vinnytsya: VNTU, 2011. 183 s.
  3. Normy vyprobuvannya elektroobladnannya: SOU-N EE 20.302:2020. Ofits. vyd. Kyyiv: PAT NEK “Ukrenerho”: Ministerstvo enerhetyky ta zakhystu dovkillya Ukrayiny. 238 s.
  4. Shutenko O. V., Zagaynova A. A., Serdyukova G. N. Analiz vliyaniya usloviy i rezhimov ekspluatatsii na tekhnicheskoye sostoyaniye osnovnoy izolyatsii vysokovol'tnykh vvodov razlichnoy konstruktsii. Elektrotekhnika i elektromekhanika. Kharkiv: NTU “KHPI”, 2019,. No. 1, C. 33–42. DOI: 10.20998/2074-272X.2019.1.08.
  5. Shutenko O. Method for Detection of Developing Defects in High-Voltage Power Transformers by Results of the Analysis of Dissolved Oil Gases. Acta Electrotechnica et Informatica, 2018, Vol. 18, No. 1, C. 11–8. DOI: 10.15546/aeei-2018-0002.
  6. Bo Qi, Quanmin Dai, Chengrong Li, Zipeng Zeng, Mingli Fu, Ran Zhuo The Mechanism and Diagnosis of Insulation Deterioration Caused by Moisture Ingress into OilImpregnated Paper Bushing. Energies, 2018, Т. 11, No. 6, pp. 1496. DOI: 10.3390/en11061496.
  7. Trotsenko Ye., Brzhezitsky V., Protsenko O., Chumack V., Haran Ya. Simulation of partial discharges under influence of impulse voltage // Technology audit and production reserves, 2018, Vol. 1, No. 1 (39), рp. 36–1. DOI: 10.15587/2312-8372.2018.123309.
  8. Wu M., Cao H., Cao J., Nguyen H., Gomes J. B. and Krishnaswamy S. P., “An overview of state-of-the-art partial discharge analysis techniques for condition monitoring”, in IEEE Electrical Insulation Magazine, vol. 31, no. 6, pp. 22–35, November-December 2015. DOI: 10.1109/MEI.2015.7303259.
  9. Metwally I. A. Failures, monitoring and new trends of power transformers. IEEE Potentials, 2011, Vol. 30, iss. 03, pp. 36–43. URL: https://www.researchgate.net/ publication/224236270_Failures_Monitoring_ and_New_Trends_of_Power_Transformers
  10. Nedelcut D., Sacerdotianu D., Tanasescu G., Nicolae S., Voinescu L. On-line and off-line monitoring- diagnosis system (MDS) for power transformers. 2008 International Conference on Condition Monitoring and Diagnosis. Beijing, 2008, рр. 949–955. DOI: 10.1109/CMD.2008.4580440.
  11. Li S., Li J. Condition monitoring and diagnosis of power equipment: review and prospective. High Voltage, 2017, Vol. 2, No. 2, рр. 82–91. DOI: 10.1049/hve.2017.0026.
  12. Tekhnika i elektrofizyka vysokykh napruh: navch. posib. / za red. V. O. Brzhezytsʹkoho ta V. M. Mykhaylova. Kharkiv: NTU “KHPI” Tornado, 2005. 930 s.
  13. Yatseyko A. Ya. Systema diahnostyky pid robochoyu napruhoyu izolyatsiyi vysokovolʹtnykh transformatoriv strumu 330 kV. Elektroinform, 2007, No. 1, S. 12–15.
  14. Ravlyk O. M., Ravlyk N. O. Prohramnyy kompleks “REC” dlya analizu protsesiv v elektrychnykh merezhakh, systemakh yikh zakhystu y avtomatyky. Svidotstvo pro reyestr. avt. prava na tvir, No. 62351. 2015