Method for Detecting Sources of Disinformation and Inauthentical Behavior of Chat Users

2025;
: pp. 278 - 288
1
Lviv Polytechnic National University, Information Systems and Networks Department, Lviv, Ukraine
2
Lviv Polytechnic National University, Department of Information Systems and Networks, Lviv, Ukraine

A method for detecting sources of disinformation and inauthentic behavior of chat users in social networks has been developed. The developed model is based on the analysis of text information using modern machine learning algorithms, in particular classifiers (SVM, Naive Bayes, decision trees, etc.) and clustering methods to identify structural relationships between news and users. Considerable attention is paid to the collection and balancing of datasets, as well as the visualization of networks to assess the spread of fake news. The results of the experiments showed a high level of classification accuracy, with the best indicators in Naive Bayes, which confirms the potential of the proposed approach for automatic monitoring and counteraction to disinformation in social networks.

  1. Anuar, S. H. H., Abas, Z. A., Yunos, N. M., Zaki, N. H. M., Hashim, N. A., Mokhtar, M. F., & Nizam, A. F. (2021, December). Comparison between Louvain and Leiden algorithm for network structure. Journal of Physics: Conference Series, 2129(1), 012028. https://doi.org/10.1088/1742-6596/2129/1/012028
  2. Chang, T. P., Hsiao, T. C., Chen, T. L., & Lo, T. C. (2025). A framework for detecting fake news by identifying fake text messages and forgery images. Enterprise Information Systems, 19, 3-4, 2436495. https://doi.org/10.1080/17517575.2024.2436495
  3. Kirdemir, B., & Adeliyi, O. (2023, April). Towards characterizing coordinated inauthentic behaviors on YouTube. In Proceedings of the 2nd Workshop on Reducing Online Misinformation through Credible Information Retrieval (ROMCIR 2022), European Conference on Information Retrieval pp. 1–16. https://par.nsf.gov/servlets/purl/10422775
  4. Lazer, D. M. J., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Zittrain, J. L. (2018).The science of fake news. . https://doi.org/10.1126/science.aao2998
  5. Lozynska, O., Markiv, O., Vysotska, V., Romanchuk, R., & Nazarkevych, M. (2024). Information technology for developing and filling a disinformation dataset using intelligent search for deepfakes and clickbait. Bulletin of Khmelnytsky National University. Technical Sciences, 343(6(1)), pp. 158–167. https://doi.org/10.31891/2307-5732-2024-343-6-24
  6. Masood, F., Almogren, A., Abbas, A., Khattak, H. A., Din, I. U., Guizani, M., Zuair, M. (2019). Spammer detection and fake user identification on social networks. IEEE Access, 7, 68140–68152. https://doi.org/10.1109/ACCESS.2019.2918196
  7. Pathak, A., Srihari, R. K., & Natu, N. (2021). Disinformation: Analysis and identification. Computational and Mathematical Organization Theory, 27(3), 357–375. https://doi.org/10.1007/s10588-021-09336-x
  8. Shu, K., Zhou, X., Wang, S., Zafarani, R., Liu, H. (2019, August). The role of user profiles for fake news detection. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (pp. 436–439). IEEE. https://doi.org/10.1145/3341161.3342891
  9. Vysotska, V., Nazarkevych, M., Vladov, S., Lozynska, O., Markiv, O., Romanchuk, R., & Danylyuk, V. (2024). Development of a method for detecting information threats in the cyberspace of Ukraine based on machine learning. Eastern-European Journal of Enterprise Technologies, 132(2), 36-48. https://doi.org/10.15587/1729-4061.2024.317456 .
  10. Vysotska, V., Prokipchuk, O., Nazarkevych, M., Romanchuk, R. (2025). Information technology for data authentication based on blockchain. Electronics and Information Technologies, 30, p.59–74. https://doi.org/10.30970/eli.30.5
  11. Xu, H., Yu, P., Xu, Z., & Wang, J. (2025, January). A hybrid attention model for fake news detection using large language models. In Proceedings of the 5th International Conference on Neural Networks, Information and Communication                                          Engineering             (NNICE              2025)               (pp.              587–590).                IEEE. https://doi.org/10.48550/arXiv.2501.11967