Sequential kernel fuzzy clustering of big data based on computational intelligence hybrid system

2017;
: pp. 20 - 24
Автори: 
Yevgeniy Bodyanskiy, Anastasiia Deineko, Polina Zhernova , Oleh Zolotukhin, Yana Khaustova

Control Systems Research Laboratory, Kharkiv National University of Radio Electronics, 14, Nauky av. Kharkiv, 61166, Ukraine

  1. yevgeniy.bodyanskiy@nure.ua,
  2. anastasiya.deineko@gmail.com,
  3. polina.zhernova@gmail.com,
  4. oleg.zolotuxin@gmail.com,
  5. yana.kutsenko@nure.ua

The architecture and self-learning method of hybrid neuro-fuzzy systems for big fuzzy clustering in on-line mode are proposed in this paper. The architecture of proposed system represents the hybrid of the fuzzy general regression neural network and clustering self-organizing network. During a learning procedure in on-line mode, the proposed system tunes both its parameters and its architecture. For tuning of membership functions parameters of neuro-fuzzy system the method based on competitive learning is proposed. The hybrid neuro-fuzzy system tunes its synaptic weights, centers and width parameters of membership functions.

1. Kohonen T. Self-Organizing Maps, T. Kohonen, Berlin: Springer-Verlag, 1995, 362 p.

2. Bezdek, J.-C. Pattern Recognition with Fuzzy Objective Function Algorithms [Text], J. C. Bezdek. –N.Y., Plenum Press, 1981, 272 p.

3. Tsao E.C.-K. Fuzzy Kohonen clustering networks [Text], E.C.-K. Tsao,J. C. Bezdek, J. C. Tsao, N. R. Pal, Pattern Recognition, 1994, No. 27, P. 757–764.

4. Pascual – Marqui R. D. Smoothly distributed fuzzy C-means: a new self-organizing map, R. D. Pascual – Marqui,A.D. Pascual – Montano, K. Kochi, J.M. Caroso, Pattern Recognition, 2001, No. 34, P. 2395–2402.

5. MacDonald D., Fyfe C. Clustering in data space and feature space [Text] : ESANN'2002 Proc.European Symp. on Artificial Neural Networks. Bruges (24-26 April 2002), Belgium, 2002, P. 137–142.

6. Girolami, M. Mercer kernel-based clustering in feature space [Text], M. Girolami, IEEE Trans. on Neural Networks, 2002, Vol. 13, No. 3, P. 780–784.

7. Camastra F. A novel kernel method for clustering [Text], F. Camastra, A. Verri, IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, No. 5, P. 801–805.

8. Schölkopf, B. Learning with Kernels [Text], B. Schölkopf, A. Smola //Cambridge M. A., MIT Press, 2002, 648 p.

9. Kacprzyk J. Springer Handbook of Computational Intelligence [Text], J. Kacprzyk, W. Pedrycz, Berlin Heidelberg: Springer – Verlag, 2015, 1634 p.

10. Haykin, S. Neural Networks and Learning Machines [Text], S. Haykin, N.Y. :Prentice Hall, 2009, 1634 p.

11. Cortes C. Support Vector Networks [Texy], C. Cortes, V. Vapnik, Machine Learning, 1995, No. 20, P. 273–297.

12. Parzen E. On the estimation of a probability density function and the mode, E.Parzen, Ann. Math. Statist, 1962, No. 38, P. 1065–1076.

13. Specht, D.F. A general regression neural network [Text], D.F. Specht, IEEE Trans. on Neural Networks, 1991, Vol. 2, P. 568–576.

14. Zahirniak D. Pattern recognition using radial basis function network. [Text], D. Zahirniak, R. Chapman, S. Rogers, B. Suter, M. Kabrisky, V. Piati, Proc 6th Ann. Aerospace Application of Artificial Intelligence Conf, Dayton, OH, 1990, P. 249–260.

15. Cover T. M. Geometrical and statistical properties of systems of linear inequali-ties with applications in pattern recognition [Text], T.M. Cover, IEEE Trans. on Electronic Computers, 1965, No. 14, P. 326–334.

16. Angelov, P. Evolving Rule-based Models: A Tool for Design of Flexible Adaptive Systems [Text] /P. Angelov, Heidelberg-New York: Springer-Verlag, 2002, 211 p.

17. Kasabov N. Evolving Connectionist Systems [Text], N. Kasabov – London: Springer-Verlag, 2003 – 307 p.

18. Angelov P.Evolving computational intelligence systems [Text], P. Angelov, N. Kasabov, Proc. 1st Int. Workshop on Genetic Fuzzy Systems, Granada, Spain, 2005, P. 76–82.

19. Lughofer E. Evolving Fuzzy Systems – Methodologies and Applications [Text], E. Lughofer, Studies in Fuzziness and Soft Computing, Springer-Berlin, 2011, 410 p.

Sequential kernel fuzzy clustering of big data based on computational intelligence hybrid system / Ye. V. Bodianskyi, A. O. Deineko, P. Ye. Zhernova, O. V. Zolotukhin, Ya. V. Khaustova // Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Serie: Informatsiini systemy ta merezhi. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2017. — No 872. — P. 20–24.