LOGIC-COGNITIVE MODELS, INFORMATION AND SYSTEM TECHNOLOGIES FOR IDENTIFYING THE STRUCTURE OF HIERARCHICAL SYSTEMS TO PROVIDE SUPPORT FOR SOLUTIONS IN CRISIS AND CONFLICT SITUATIONS

2019;
: 76-90
https://doi.org/10.23939/ujit2019.01.076
Received: November 19, 2019
Accepted: November 20, 2019

Цитування за ДСТУ: Сікора Л. С., Лиса Н. К., Міюшкович Ю. Г., Марцишин Р. С. Логіко-когнітивні моделі та інформаційні технології ідентифікації структури ієрархічних систем для підтримки рішень у конфліктних ситуаціях. Український журнал інформаційних технологій. 2019, т. 1, № 1. С. 76–90.

Citation APA: Sikora, L. S., Lysa, N. K., Miyushkovych, Yu. G., & Martsyshyn, R. S. (2019). Logic-cognitive models, information and system technologies for identifying the structure of hierarchical systems to provide support for solutions in crisis and conflict situations. Ukrainian Journal of Information Technology, 1(1), 76–90. https://doi.org/10.23939/ujit2019.01.076

1
Lviv Polytechnic National University, Lviv, Ukraine
2
Lviv Polytechnic National University, Department of Automated Control Systems
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University, Department of Automated Control Systems

The ar­tic­le pre­sents sche­mes and mo­dels to sup­port de­ci­si­on-ma­king for the eli­mi­na­ti­on of thre­ats du­ring emer­gen­ci­es in hi­erarchi­cal systems. The construc­ti­on of sche­mes and mo­dels was ba­sed on in­for­ma­ti­on and system techno­lo­gi­es (ba­sed on the con­cept of iden­ti­fi­ca­ti­on). In mo­dern techno­lo­gi­cal pro­duc­ti­ons with a complex hi­erarchi­cal struc­tu­re, the cau­ses of an emer­gency can be: fa­ilu­res, obstac­les, mal­functi­ons (both in in­for­ma­ti­on ma­na­ge­ment struc­tu­res and in pro­duc­ti­on units, and in ca­se of techno­logy vi­ola­ti­on).

In the event of er­rors (which may be ma­de in the pro­cess of analyzing a li­mi­ting sit­ua­ti­on or emer­gency) and in­cor­rect de­ci­si­ons, the dyna­mics of the de­ve­lop­ment of events will ha­ve di­sastro­us con­seq­uen­ces. To pre­vent the de­ve­lop­ment of events un­der such a sce­na­rio, ope­ra­ti­onal and techni­cal per­son­nel sho­uld ha­ve an approp­ri­ate le­vel of syste­ma­tic know­led­ge. This al­lows staff to iden­tify the so­ur­ces of ha­zards and fac­tors, to bu­ild a cau­se-and-ef­fect re­la­ti­onships. This be­co­mes the ba­sis for the analysis of the sta­te of po­ten­ti­ally dan­ge­ro­us ob­jects (PDO) in the hi­erarchi­cal struc­tu­re of the system. This system-in­for­ma­ti­on ba­sis is ne­ces­sary for construc­ting sce­na­ri­os for the de­ve­lop­ment of events, iden­tif­ying bottle­necks and ma­king de­ci­si­ons in the con­text of eli­mi­na­ting thre­ats and emer­gency con­di­ti­ons by the ope­ra­ti­onal ma­na­ge­ment te­am. For complex struc­tu­res of techno­ge­nic systems, the prob­lem of iden­ti­fi­ca­ti­on (both dyna­mics and in­ter­con­nec­ti­ons of aggre­ga­tes) is not fully re­sol­ved. This req­ui­res the de­ve­lop­ment of new met­hods ta­king in­to ac­co­unt hu­man be­ha­vi­or.

Mo­dern pro­duc­ti­on is a complex in­teg­ra­ted hu­man-mac­hi­ne control­led system and ma­na­ge­ment stra­tegy (which are inclu­ded both in the struc­tu­re of the au­to­ma­ted control system and in the know­led­ge ba­se and pro­fes­si­onal skills of the hu­man ope­ra­tor). A cha­rac­te­ris­tic fe­atu­re of such systems is the distri­bu­ti­on of in­for­ma­ti­on lo­ad in ac­cor­dan­ce with the tar­get tasks. This req­ui­res the de­ve­lop­ment of da­ta flows of va­ri­ous in­for­ma­ti­onal sig­ni­fi­can­ce, iden­tif­ying the cha­rac­te­ris­tic signs of the system's be­ha­vi­or re­la­ti­ve to the tar­get, and for­ming so­lu­ti­ons for co­or­di­na­ting the system's mo­ve­ment in the di­rec­ti­on of the tar­get area. The­se de­ci­si­on-ma­king pro­ces­ses and pro­ce­du­res incre­ase the men­tal ten­si­on of the ope­ra­tor. This may le­ad to de­ci­si­ons to un­ne­ces­sary risk. That is, in ac­cor­dan­ce with the sit­ua­ti­on, the pri­ce of er­ror incre­ases. This is what forms the set of req­ui­re­ments for the ope­ra­tor: both to the le­vel of his in­tel­lec­tu­al re­adi­ness, and to his psychophysi­olo­gi­cal cha­rac­te­ris­tics.

[1]     Aizer­man, M. A., & Ales­ke­rov, F. T. (1990). Vybor va­ri­an­tov. Os­novy te­orii. Mos­cow: Nau­ka, 240 p. [In Rus­si­an].

[2]     Ba­nelykov, A. A. (1986). Pro­ek­ti­ro­va­nie sis­tem pri­ni­atiia res­he­nii v ener­ge­ti­ke. Mos­cow: Ener­go­ato­miz­dat, 120 p. [In Rus­si­an].

[3]     Di­den­ko, N. I., et al. (1988). Prog­rammno-tce­le­voe pla­ni­ro­va­nie issle­do­va­nii i raz­ra­bo­tok v pri­bo­rostro­enii. Le­ningrad: Mas­hi­nostro­enie, 183 p. [In Rus­si­an].

[4]     Do­do­nov, A. G., Khadzhi­nov, V. V., & Vo­los­kov, I. I. (1988). Vychis­li­telnye sis­temy dlia res­he­niia za­dach ope­ra­tiv­no-or­ga­ni­zat­ci­on­no­go up­rav­le­niia. Kyiv: Na­uk. dum­ka, 216 p. [In Rus­si­an].

[5]     Eik­seff, P. (1975). Os­novy iden­ti­fi­kat­cii sis­tem. Mos­cow: Mir, 684 p. [In Rus­si­an].

[6]     Eik­seff, P. (1983). Sov­re­mennye me­tody iden­ti­fi­kat­cii sic­tem. Mos­cow: Mir, 400 p. [In Rus­si­an].

[7]     Eme­li­anov, S. V. (Ed.). (1988). Tekhno­lo­giia sis­tem­no­go mo­de­li­ro­va­niia. Mos­cow: Mas­hi­nostro­enie, 520 p. [In Rus­si­an].

[8]     Ge­ra­si­mov, B. M., Ta­ra­sov, V. A., & To­ka­rev, I. V. (1993). Che­lo­ve­ko-mas­hinnye sis­temy pri­ni­atiia res­he­nii s ele­men­ta­mi is­kusstven­no­go in­tel­lek­ta. Kyiv: Na­uk. dum­ka, 183 p. [In Rus­si­an].

[9]     Gla­dun, V. P. (1987). Pla­ni­ro­va­nie res­he­nii. Kyiv: Nau­ka, 168 p. [In Rus­si­an].

[10]  Gryciuk, Yu. I., Dragan, Ya. P. (2016). Numerical integration of table functions to one variable using Taylor polynomial. Scientific Bulletin of UNFU, 26(3), 350–360. https://doi.org/10.15421/40260358.

[11]  Grytsiuk, Yu. I., & Leshkevych, I. F. (2017). The Problems of Definition and Analysis of Software Requirements. Scientific Bulletin of UNFU, 27(4), 148–158. https://doi.org/10.15421/40270433.

[12]  Hrytsi­uk, Yu. I., & Buchkovska, A. Yu. (2017). Vis­ua­li­za­ti­on of the Re­sults of Ex­pert Eval­ua­ti­on of Softwa­re Qua­lity Using Po­lar Di­ag­rams. Sci­en­ti­fic Bul­le­tin of UN­FU, 27(10), 137–145. https://doi.org/10.15421/40271025.

[13]  Hrytsiuk, Yu. I., & Nemova, E. A. (2018). Peculiarities of Formulation of Requirements to the Software. Scientific Bulletin of UNFU, 28(7), 135–148. https://doi.org/10.15421/40280727.

[14]  Hrytsiuk, Yu. I., & Zhabych, M. R. (2018). Risk Management of Implementation of Program Projects. Scientific Bulletin of UNFU, 28(1), 150–162. https://doi.org/10.15421/40280130.

[15]  Iva­nit­cev, V. V. (1986). Av­to­ma­ti­zat­ciia mo­de­li­ro­va­niia po­to­kovykh sis­tem. Le­ningrad: Nau­ka, 142 p. [In Rus­si­an].

[16]  Ka­bi­kin, V. E. (1977). Di­ag­nos­ti­ka ope­ra­tiv­no­go myshle­niia. Kyiv: Na­uk. dum­ka, 110 p. [In Rus­si­an].

[17]  Ka­no­vei, V. G. (1984). Ak­si­oma vybo­ra i ak­si­oma de­ter­mi­ni­ro­va­nos­ti. Mos­cow: Nau­ka, 64 p. [In Rus­si­an].

[18]  Khu­is, D. (1981). Pric­hinnyi ana­liz v sta­tis­tic­hes­kikh issle­do­va­niiakh. Mos­cow: Sta­tis­ti­ka i fi­nansy, 254 p. [In Rus­si­an].

[19]  Ki­ni, R. L., & Ra­ifa, Kh. (1981). Pri­ni­atie res­he­nii pri mno­gikh kri­te­riiakh: pred­pochte­niia i za­meshhe­niia. Mos­cow: Ra­dio i svi­az, 560 p. [In Rus­si­an].

[20]  Kol­man, R., Fal, P., & Ar­bib, M. (1971). Oc­her­ki po ma­te­ma­tic­hes­koi te­orii sis­tem. Mos­cow: Mir, 398 p. [In Rus­si­an].

[21]  Li­ametc, V. I., & Ti­as­hev, A. D. (2004). Sis­temnyi ana­liz. Khar­kiv: KhNU­RE, 448 p. [In Rus­si­an].

[22]  Li­ung, L. (1991). Iden­ti­fi­kat­ciia sis­tem. Mos­cow: Nau­ka. 432 p. [In Rus­si­an].

[23]  Lur­giia, A. F. (2002). Os­novy ne­irop­sik­ho­lo­gii. Mos­cow: Aka­de­miia, 384 p. [In Rus­si­an].

[24]  Lysa, N. K., & Si­ko­ra, L. S. (2015). In­for­mat­si­ino-ener­hetychna kontseptsiia ta ba­zo­vi mo­de­li aktyvi­zat­sii tekhno­lo­hichnykh prot­se­siv na pidsta­vi la­zer­no­ho fo­ton­no­ho zon­du­van­nia. Part 2. Mo­de­liu­van­nia ta in­for­mat­si­ini tekhno­lo­hii, 75, 132–143. [In Uk­ra­ini­an].

[25]  Ma­imi­nas, E. Z. (1989). Kom­piu­ter i za­dac­ha vybo­ra. Mos­cow: Nau­ka, 208 p. [In Rus­si­an].

[26]  Ma­ka­ro­va, I. M. (Ed.). (1992). Te­oriia vybo­ra i pri­ni­atiia res­he­nii. Mos­cow: Nau­ka, 328 p. [In Rus­si­an].

[27]  Me­sa­ro­vich, M., & Tak­ha­ka­ra, Ia. (1978). Obshhaia te­oriia sis­tem. Ma­te­ma­tic­hes­kie os­novy. Mos­cow: Mir, 310 p. [In Rus­si­an].

[28]  Me­sa­ro­vich, M., Ma­ko, D., & Ta­kak­ha­ra, I. (1973). Te­oriia ierarkhic­hes­kikh mno­gou­rov­nevykh sis­tem. Mos­cow: Mir, 344 p. [In Rus­si­an].

[29]  Mic­hi, D. (1975). In­teg­ralnye ro­boty. Mos­cow: Mir. Vol. 2, 526 p. [In Rus­si­an].

[30]  Mir­kin, B. G. (1974). Prob­le­ma grup­po­vo­go vybo­ra. Mos­cow: Nau­ka, 256 p. [In Rus­si­an].

[31]  Pav­lov, A. A. (Ed.). (1990). Sis­temy av­to­ma­ti­zi­ro­van­no­go pla­ni­ro­va­niia i dis­petchi­ro­va­niia grup­povykh pro­iz­vodstven­nykh prot­ces­sov. Kyiv: Tekhni­ka, 198 p. [In Rus­si­an].

[32]  Pav­lov, A. A. (Ed.). (1991). Os­novy sis­tem­no­go ana­li­za i pro­ek­ti­ro­va­niia ASU. Kyiv: Vishha shk., 367 p. [In Rus­si­an].

[33]  Pav­lov, A. A. (Ed.). (1993). Konstruk­tivnye po­li­no­mi­alnye algorithmy res­he­niia in­di­vid­ualnykh za­dach iz klas­sa NP. Kyiv: Tekhni­ka, 128 p. [In Rus­si­an].

[34]  Pe­rel­mak, I. M. (1979). Ma­te­ma­tic­hes­kie me­todyv te­orii sis­tem. Mos­cow: Mir, 327 p. [In Rus­si­an].

[35]  Pe­rel­mak, I. M. (1982). Ope­ra­tiv­naia iden­ti­fi­kat­ciia obek­tov up­rav­le­niia. Mos­cow: Ener­go­ato­miz­dat, 270 p. [In Rus­si­an].

[36]  Per­voz­vanskii, A. A. (1972). Ma­te­ma­tic­hes­kie me­tody v up­rav­le­nii pro­iz­vodstvom. Mos­cow: Nau­ka, 616 p. [In Rus­si­an].

[37]  Podcha­so­va, T. P., La­go­da, A. P., & Rud­nitckii, V. F. (1989). Up­rav­le­nie v ierarkhic­hes­kikh pro­iz­vodstvennykh struk­tu­rakh. Kyiv: Na­uk. dum­ka, 184 p. [In Rus­si­an].

[38]  Pos­pe­lov, G. S. (Ed.). (1981). Prob­lemy prog­rammno-tce­le­voe pla­ni­ro­va­nie i up­rav­le­niia. Mos­cow: Nau­ka, 464 p. [In Rus­si­an].

[39]  Pos­pe­lov, G. S., & Iri­kov, V. A. (1976). Prog­rammno-tce­le­voe pla­ni­ro­va­nie i up­rav­le­nie. Mos­cow: Sov. ra­dio, 440 p. [In Rus­si­an].

[40]  Pos­pe­lov, G. S., Iri­kov, V. A., & Ku­ri­lov, A. E. (1985). Prot­ce­dury i algorithmy for­mi­ro­va­niia kompleksnykh prog­ramm. Mos­cow: Nau­ka, 424 p. [In Rus­si­an].

[41]  Pot­kov, Iu. S. (Ed.). (1976). Iden­ti­fi­kat­ciia i op­ti­mi­zat­ciia ne­li­ne­inykh stok­has­tic­hes­kikh sis­tem. Mos­cow: Ener­giia, 440 p. [In Rus­si­an].

[42]  Rez­nic­hen­ko, S. S., et al. (1991). Eko­no­mi­ko-ma­te­ma­tic­hes­kie me­tody mo­de­li­ro­va­niia v pla­ni­ro­va­nii i up­rav­le­nii gornym pro­iz­vodstvom. Mos­cow: Ned­ra, 428 p. [In Rus­si­an].

[43]  Sa­gu­nov, V. I., & Lo­ma­ki­na, L. S. (1990). Kontro­lep­ri­god­nost struk­tur­no-svi­azannykh sis­tem. Mos­cow: Ener­go­atom, 112 p. [In Rus­si­an].

[44]  Si­ko­ra, L. S. (1998). Syste­mo­lo­hiia pryi­ni­at­tia ris­hen na up­rav­lin­nia v skladnykh tekhno­lo­hichnykh struk­tu­rakh. Lviv: Ka­me­ni­ar, 453 p. [In Uk­ra­ini­an].

[45]  Si­ko­ra, L. S. (2009). Koh­nityvni mo­de­li ta lo­hi­ka ope­ratyvno­ho up­rav­lin­nia v iierarkhichnykh in­teh­ro­vanykh syste­makh v umo­vakh ryzyku. Lviv: TsSD "EB­TES", 432 p. [In Uk­ra­ini­an].

[46]  Si­ko­ra, L. S., Lysa, N. K., & Tkac­huk, R. L. (2016a). Lo­hi­ko-koh­nityvna mo­del in­for­mat­si­inoi identyfi­kat­sii prychynno-nas­lid­kovykh zvi­az­kiv pry dii aktyvnykh fak­to­riv na syste­mu. Part 1. Mo­de­liu­van­nia ta in­for­mat­si­ini tekhno­lo­hii, 76, 152–165. [In Uk­ra­ini­an].

[47]  Si­ko­ra, L. S., Lysa, N. K., & Tkac­huk, R. L. (2016b). Lo­hi­ko-koh­nityvna mo­del in­for­mat­si­inoi identyfi­kat­sii prychynno-nas­lid­kovykh zvi­az­kiv pry dii aktyvnykh fak­to­riv ryzyku na syste­mu. Part 2. Mo­de­liu­van­nia ta in­for­mat­si­ini tekhno­lo­hii, 76, 169–177. [In Uk­ra­ini­an].

[48]  Si­ko­ra, L. S., Tkac­huk, R. L., Tkac­huk, H. V., & Yakymchuk, B. L. (2012). Koh­nityvna skla­do­va ope­ratyvnoi diial­nos­ti v umo­vakh ryzyku i nec­hit­kos­ti danykh. Osobystist v ekstre­malnykh umo­vakh: Ma­ter. V-oi na­uk.-prakt. konf., (pp. 193–197), Lviv: LDU BZhD. [In Uk­ra­ini­an].

[49]  Sku­rik­hin, V. I., Kvac­hev, V. G., Valkman, Iu. R., & Iako­ven­ko, L. P. (1990). In­for­mat­ci­onnye tekhno­lo­gii v ispyta­niiakh slozhnykh obek­tov: me­tody i sredstva. Kyiv: Na­uk. dum­ka, 320 p. [In Rus­si­an].

[50]  Sytnyk, V. F. (Ed.). (1995). Systemy pidtrymky pryi­ni­at­tia ris­hen. Kyiv: Tekhni­ka, 162 p. [In Uk­ra­ini­an].

[51]  Tcygachko, V. N. (1991). Ru­ko­vo­di­te­liu o pri­ni­atii res­he­nii. Mos­cow: Fi­nansy i stat., 240 p. [In Rus­si­an].

[52]  Tkac­huk, R. L., & Si­ko­ra, L. S. (2010). Lo­hi­ko-koh­nityvni mo­de­li for­mu­van­nia up­rav­linskykh ris­hen in­teh­ro­vanymy syste­mamy v ekstre­malnykh umo­vakh: po­sibnyk. Lviv: Li­ha-Pres, 404 p. [In Uk­ra­ini­an].

[53]  Vasylen­ko, V. O. (2003). Te­oriia i praktyka roz­robky up­rav­linskykh ris­hen. Kyiv: TsUL, 236 p. [In Uk­ra­ini­an].

[54]  Vasylen­ko, V. O., & Shostka, V. T. (2003). Sytu­at­si­in­yi me­nedzhment. Kyiv: TsUL, 285 p. [In Uk­ra­ini­an].

[55]  Va­vi­lov, A. A. (Ed.). (1983). Imi­tat­ci­on­noe mo­de­li­ro­va­nie pro­iz­vodstvennykh sis­tem. Le­ningrad: Mas­hi­nostro­enie, 416 p. [In Rus­si­an].

[56]  Ver­mis­hev, Iu. Kh. (1982). Me­tody po­is­ka resh6enii pri pro­ek­ti­ro­va­nii slozhnykh tekhnic­hes­kikh sis­tem. Mos­cow: Ra­dio i svi­az, 152 p. [In Rus­si­an].

[57]  Vil­kas, E. I., & Ma­imi­nas, E. Z. (1981). Res­he­niia: te­oriia, in­for­mat­ciia, mo­de­li­ro­va­nie. Mos­cow: Ra­dio i svi­az, 328 p. [In Rus­si­an].

[58]  Za­it­cev, V. S. (1990). Sis­temnyi ana­liz ope­ra­torskoi deiatel­nos­ti. Mos­cow: Ra­dio i svi­az, 120 p. [In Rus­si­an].

[59]  Za­valyshyna, D. N. (1985). Psykho­lo­hichnyi ana­liz ope­ratyvno­ho myslen­nia. Mos­cow: Nau­ka, 220 p. [In Uk­ra­ini­an].