The article presents schemes and models to support decision-making for the elimination of threats during emergencies in hierarchical systems. The construction of schemes and models was based on information and system technologies (based on the concept of identification). In modern technological productions with a complex hierarchical structure, the causes of an emergency can be: failures, obstacles, malfunctions (both in information management structures and in production units, and in case of technology violation).
In the event of errors (which may be made in the process of analyzing a limiting situation or emergency) and incorrect decisions, the dynamics of the development of events will have disastrous consequences. To prevent the development of events under such a scenario, operational and technical personnel should have an appropriate level of systematic knowledge. This allows staff to identify the sources of hazards and factors, to build a cause-and-effect relationships. This becomes the basis for the analysis of the state of potentially dangerous objects (PDO) in the hierarchical structure of the system. This system-information basis is necessary for constructing scenarios for the development of events, identifying bottlenecks and making decisions in the context of eliminating threats and emergency conditions by the operational management team. For complex structures of technogenic systems, the problem of identification (both dynamics and interconnections of aggregates) is not fully resolved. This requires the development of new methods taking into account human behavior.
Modern production is a complex integrated human-machine controlled system and management strategy (which are included both in the structure of the automated control system and in the knowledge base and professional skills of the human operator). A characteristic feature of such systems is the distribution of information load in accordance with the target tasks. This requires the development of data flows of various informational significance, identifying the characteristic signs of the system's behavior relative to the target, and forming solutions for coordinating the system's movement in the direction of the target area. These decision-making processes and procedures increase the mental tension of the operator. This may lead to decisions to unnecessary risk. That is, in accordance with the situation, the price of error increases. This is what forms the set of requirements for the operator: both to the level of his intellectual readiness, and to his psychophysiological characteristics.
[1] Aizerman, M. A., & Aleskerov, F. T. (1990). Vybor variantov. Osnovy teorii. Moscow: Nauka, 240 p. [In Russian].
[2] Banelykov, A. A. (1986). Proektirovanie sistem priniatiia reshenii v energetike. Moscow: Energoatomizdat, 120 p. [In Russian].
[3] Didenko, N. I., et al. (1988). Programmno-tcelevoe planirovanie issledovanii i razrabotok v priborostroenii. Leningrad: Mashinostroenie, 183 p. [In Russian].
[4] Dodonov, A. G., Khadzhinov, V. V., & Voloskov, I. I. (1988). Vychislitelnye sistemy dlia resheniia zadach operativno-organizatcionnogo upravleniia. Kyiv: Nauk. dumka, 216 p. [In Russian].
[5] Eikseff, P. (1975). Osnovy identifikatcii sistem. Moscow: Mir, 684 p. [In Russian].
[6] Eikseff, P. (1983). Sovremennye metody identifikatcii sictem. Moscow: Mir, 400 p. [In Russian].
[7] Emelianov, S. V. (Ed.). (1988). Tekhnologiia sistemnogo modelirovaniia. Moscow: Mashinostroenie, 520 p. [In Russian].
[8] Gerasimov, B. M., Tarasov, V. A., & Tokarev, I. V. (1993). Cheloveko-mashinnye sistemy priniatiia reshenii s elementami iskusstvennogo intellekta. Kyiv: Nauk. dumka, 183 p. [In Russian].
[9] Gladun, V. P. (1987). Planirovanie reshenii. Kyiv: Nauka, 168 p. [In Russian].
[10] Gryciuk, Yu. I., Dragan, Ya. P. (2016). Numerical integration of table functions to one variable using Taylor polynomial. Scientific Bulletin of UNFU, 26(3), 350–360. https://doi.org/10.15421/40260358.
[11] Grytsiuk, Yu. I., & Leshkevych, I. F. (2017). The Problems of Definition and Analysis of Software Requirements. Scientific Bulletin of UNFU, 27(4), 148–158. https://doi.org/10.15421/40270433.
[12] Hrytsiuk, Yu. I., & Buchkovska, A. Yu. (2017). Visualization of the Results of Expert Evaluation of Software Quality Using Polar Diagrams. Scientific Bulletin of UNFU, 27(10), 137–145. https://doi.org/10.15421/40271025.
[13] Hrytsiuk, Yu. I., & Nemova, E. A. (2018). Peculiarities of Formulation of Requirements to the Software. Scientific Bulletin of UNFU, 28(7), 135–148. https://doi.org/10.15421/40280727.
[14] Hrytsiuk, Yu. I., & Zhabych, M. R. (2018). Risk Management of Implementation of Program Projects. Scientific Bulletin of UNFU, 28(1), 150–162. https://doi.org/10.15421/40280130.
[15] Ivanitcev, V. V. (1986). Avtomatizatciia modelirovaniia potokovykh sistem. Leningrad: Nauka, 142 p. [In Russian].
[16] Kabikin, V. E. (1977). Diagnostika operativnogo myshleniia. Kyiv: Nauk. dumka, 110 p. [In Russian].
[17] Kanovei, V. G. (1984). Aksioma vybora i aksioma determinirovanosti. Moscow: Nauka, 64 p. [In Russian].
[18] Khuis, D. (1981). Prichinnyi analiz v statisticheskikh issledovaniiakh. Moscow: Statistika i finansy, 254 p. [In Russian].
[19] Kini, R. L., & Raifa, Kh. (1981). Priniatie reshenii pri mnogikh kriteriiakh: predpochteniia i zameshheniia. Moscow: Radio i sviaz, 560 p. [In Russian].
[20] Kolman, R., Fal, P., & Arbib, M. (1971). Ocherki po matematicheskoi teorii sistem. Moscow: Mir, 398 p. [In Russian].
[21] Liametc, V. I., & Tiashev, A. D. (2004). Sistemnyi analiz. Kharkiv: KhNURE, 448 p. [In Russian].
[22] Liung, L. (1991). Identifikatciia sistem. Moscow: Nauka. 432 p. [In Russian].
[23] Lurgiia, A. F. (2002). Osnovy neiropsikhologii. Moscow: Akademiia, 384 p. [In Russian].
[24] Lysa, N. K., & Sikora, L. S. (2015). Informatsiino-enerhetychna kontseptsiia ta bazovi modeli aktyvizatsii tekhnolohichnykh protsesiv na pidstavi lazernoho fotonnoho zonduvannia. Part 2. Modeliuvannia ta informatsiini tekhnolohii, 75, 132–143. [In Ukrainian].
[25] Maiminas, E. Z. (1989). Kompiuter i zadacha vybora. Moscow: Nauka, 208 p. [In Russian].
[26] Makarova, I. M. (Ed.). (1992). Teoriia vybora i priniatiia reshenii. Moscow: Nauka, 328 p. [In Russian].
[27] Mesarovich, M., & Takhakara, Ia. (1978). Obshhaia teoriia sistem. Matematicheskie osnovy. Moscow: Mir, 310 p. [In Russian].
[28] Mesarovich, M., Mako, D., & Takakhara, I. (1973). Teoriia ierarkhicheskikh mnogourovnevykh sistem. Moscow: Mir, 344 p. [In Russian].
[29] Michi, D. (1975). Integralnye roboty. Moscow: Mir. Vol. 2, 526 p. [In Russian].
[30] Mirkin, B. G. (1974). Problema gruppovogo vybora. Moscow: Nauka, 256 p. [In Russian].
[31] Pavlov, A. A. (Ed.). (1990). Sistemy avtomatizirovannogo planirovaniia i dispetchirovaniia gruppovykh proizvodstvennykh protcessov. Kyiv: Tekhnika, 198 p. [In Russian].
[32] Pavlov, A. A. (Ed.). (1991). Osnovy sistemnogo analiza i proektirovaniia ASU. Kyiv: Vishha shk., 367 p. [In Russian].
[33] Pavlov, A. A. (Ed.). (1993). Konstruktivnye polinomialnye algorithmy resheniia individualnykh zadach iz klassa NP. Kyiv: Tekhnika, 128 p. [In Russian].
[34] Perelmak, I. M. (1979). Matematicheskie metodyv teorii sistem. Moscow: Mir, 327 p. [In Russian].
[35] Perelmak, I. M. (1982). Operativnaia identifikatciia obektov upravleniia. Moscow: Energoatomizdat, 270 p. [In Russian].
[36] Pervozvanskii, A. A. (1972). Matematicheskie metody v upravlenii proizvodstvom. Moscow: Nauka, 616 p. [In Russian].
[37] Podchasova, T. P., Lagoda, A. P., & Rudnitckii, V. F. (1989). Upravlenie v ierarkhicheskikh proizvodstvennykh strukturakh. Kyiv: Nauk. dumka, 184 p. [In Russian].
[38] Pospelov, G. S. (Ed.). (1981). Problemy programmno-tcelevoe planirovanie i upravleniia. Moscow: Nauka, 464 p. [In Russian].
[39] Pospelov, G. S., & Irikov, V. A. (1976). Programmno-tcelevoe planirovanie i upravlenie. Moscow: Sov. radio, 440 p. [In Russian].
[40] Pospelov, G. S., Irikov, V. A., & Kurilov, A. E. (1985). Protcedury i algorithmy formirovaniia kompleksnykh programm. Moscow: Nauka, 424 p. [In Russian].
[41] Potkov, Iu. S. (Ed.). (1976). Identifikatciia i optimizatciia nelineinykh stokhasticheskikh sistem. Moscow: Energiia, 440 p. [In Russian].
[42] Reznichenko, S. S., et al. (1991). Ekonomiko-matematicheskie metody modelirovaniia v planirovanii i upravlenii gornym proizvodstvom. Moscow: Nedra, 428 p. [In Russian].
[43] Sagunov, V. I., & Lomakina, L. S. (1990). Kontroleprigodnost strukturno-sviazannykh sistem. Moscow: Energoatom, 112 p. [In Russian].
[44] Sikora, L. S. (1998). Systemolohiia pryiniattia rishen na upravlinnia v skladnykh tekhnolohichnykh strukturakh. Lviv: Kameniar, 453 p. [In Ukrainian].
[45] Sikora, L. S. (2009). Kohnityvni modeli ta lohika operatyvnoho upravlinnia v iierarkhichnykh intehrovanykh systemakh v umovakh ryzyku. Lviv: TsSD "EBTES", 432 p. [In Ukrainian].
[46] Sikora, L. S., Lysa, N. K., & Tkachuk, R. L. (2016a). Lohiko-kohnityvna model informatsiinoi identyfikatsii prychynno-naslidkovykh zviazkiv pry dii aktyvnykh faktoriv na systemu. Part 1. Modeliuvannia ta informatsiini tekhnolohii, 76, 152–165. [In Ukrainian].
[47] Sikora, L. S., Lysa, N. K., & Tkachuk, R. L. (2016b). Lohiko-kohnityvna model informatsiinoi identyfikatsii prychynno-naslidkovykh zviazkiv pry dii aktyvnykh faktoriv ryzyku na systemu. Part 2. Modeliuvannia ta informatsiini tekhnolohii, 76, 169–177. [In Ukrainian].
[48] Sikora, L. S., Tkachuk, R. L., Tkachuk, H. V., & Yakymchuk, B. L. (2012). Kohnityvna skladova operatyvnoi diialnosti v umovakh ryzyku i nechitkosti danykh. Osobystist v ekstremalnykh umovakh: Mater. V-oi nauk.-prakt. konf., (pp. 193–197), Lviv: LDU BZhD. [In Ukrainian].
[49] Skurikhin, V. I., Kvachev, V. G., Valkman, Iu. R., & Iakovenko, L. P. (1990). Informatcionnye tekhnologii v ispytaniiakh slozhnykh obektov: metody i sredstva. Kyiv: Nauk. dumka, 320 p. [In Russian].
[50] Sytnyk, V. F. (Ed.). (1995). Systemy pidtrymky pryiniattia rishen. Kyiv: Tekhnika, 162 p. [In Ukrainian].
[51] Tcygachko, V. N. (1991). Rukovoditeliu o priniatii reshenii. Moscow: Finansy i stat., 240 p. [In Russian].
[52] Tkachuk, R. L., & Sikora, L. S. (2010). Lohiko-kohnityvni modeli formuvannia upravlinskykh rishen intehrovanymy systemamy v ekstremalnykh umovakh: posibnyk. Lviv: Liha-Pres, 404 p. [In Ukrainian].
[53] Vasylenko, V. O. (2003). Teoriia i praktyka rozrobky upravlinskykh rishen. Kyiv: TsUL, 236 p. [In Ukrainian].
[54] Vasylenko, V. O., & Shostka, V. T. (2003). Sytuatsiinyi menedzhment. Kyiv: TsUL, 285 p. [In Ukrainian].
[55] Vavilov, A. A. (Ed.). (1983). Imitatcionnoe modelirovanie proizvodstvennykh sistem. Leningrad: Mashinostroenie, 416 p. [In Russian].
[56] Vermishev, Iu. Kh. (1982). Metody poiska resh6enii pri proektirovanii slozhnykh tekhnicheskikh sistem. Moscow: Radio i sviaz, 152 p. [In Russian].
[57] Vilkas, E. I., & Maiminas, E. Z. (1981). Resheniia: teoriia, informatciia, modelirovanie. Moscow: Radio i sviaz, 328 p. [In Russian].
[58] Zaitcev, V. S. (1990). Sistemnyi analiz operatorskoi deiatelnosti. Moscow: Radio i sviaz, 120 p. [In Russian].
[59] Zavalyshyna, D. N. (1985). Psykholohichnyi analiz operatyvnoho myslennia. Moscow: Nauka, 220 p. [In Ukrainian].