EVOLUTION OF TWO-DIMENSIONAL CELLULAR AUTOMATA. NEW FORMS OF PRESENTATION

2021;
: 85-90
https://doi.org/10.23939/ujit2021.03.085
Received: April 14, 2021
Accepted: June 01, 2021

Ци­ту­ван­ня за ДСТУ: Бі­лан С. М. Ево­лю­ція дво­ви­мір­них клі­тин­них ав­то­ма­тів. Но­ві фор­ми по­дан­ня. Ук­ра­їнсь­кий жур­нал ін­форма­ційних тех­но­ло­гій. 2021, т. 3, № 1. С. 85–90.

Ci­ta­ti­on APA: Bi­lan, S. M. (2021). Evo­lu­ti­on of two-di­men­si­onal cel­lu­lar au­to­ma­ta. New forms of pre­sen­ta­ti­on. Uk­ra­ini­an Jo­ur­nal of In­forma­ti­on Techno­logy, 3(1), 85–90. https://doi.org/10.23939/ujit2021.03.085

Authors:
1
State University of Infrastructure and Technology, Kyiv, Ukraine

The paper considers cellular automata and forms of reflection of their evolution. Forms of evolution of elementary cellular automata are known and widely used, which allowed specialists to model different dynamic processes and behavior of systems in different directions. In the context of the easy construction of the form of evolution of elementary cellular automata, difficulties arise in representing the form of evolution of two-dimensional cellular automata, both synchronous and asynchronous. The evolution of two-dimensional cellular automata is represented by a set of states of two-dimensional forms of cellular automata, which complicates the perception and determination of the dynamics of state change. The aim of this work is to solve the problem of a fixed mapping of the evolution of a two-dimensional cellular automaton in the form of a three-dimensional representation, which is displayed in different colors on a two-dimensional image The paper proposes the evolution of two-dimensional cellular automata in the form of arrays of binary codes for each cell of the field. Each time step of the state change is determined by the state of the logical "1" or "0". Moreover, each subsequent state is determined by increasing the binary digit by one. The resulting binary code identifies the color code that is assigned to the corresponding cell at each step of the evolution iteration. As a result of such coding, a two-dimensional color matrix (color image) is formed, which in its color structure indicates the evolution of a two-dimensional cellular automaton. To represent evolution, Wolfram coding was used, which increases the number of rules for a two-dimensional cellular automaton. The rules were used for the von Neumann neighborhood without taking into account the own state of the analyzed cell. In accordance with the obtained two-dimensional array of codes, a discrete color image is formed. The color of each pixel of such an image is encoded by the obtained evolution code of the corresponding cell of the two-dimensional cellular automaton with the same coordinates. The bitness of the code depends on the number of time steps of evolution. The proposed approach allows us to trace the behavior of the cellular automaton in time depending on its initial states. Experimental analysis of various rules for the von Neumann neighborhood made it possible to determine various rules that allow the shift of an image in different directions, as well as various affine transformations over images. Using this approach, it is possible to describe various dynamic processes and natural phenomena.

  1. AC­RI. (2016). Ef­fects of Agents Fe­ar, De­si­re and Know­ledge on The­ir Suc­cess When Cros­sing a CA Ba­sed Highway, at AB­Sim-CA Se­cond In­terna­ti­onal Workshop on Agent-Ba­sed Si­mu­la­ti­on & Cel­lu­lar Au­to­ma­ta, at the 12th In­terna­ti­onal Con­fe­ren­ce on Cel­lu­lar Au­to­ma­ta for Re­se­arch and In­dustry. AC­RI 2016, Pro­ce­edings (Sep­tember 05-08, 2016), Fez (Mo­roc­co), Sept. 05-08, 2016, Talk gi­ven on Sep­tember 8. Ret­ri­eved from: http://ac­ri2016.complex­world.net
  2. Ada­matzky, A. (2010). Ga­me of li­fe Cel­lu­lar au­to­ma­ta. Sprin­ger-Ver­lag Lon­don, 579. https://doi.org/10.1007/978-1-84996-217-9
  3. Ada­matzky, A. (2018). Cel­lu­lar au­to­ma­ta. A vo­lu­me in the En­ciclo­pe­dia of cjmple­xity and systems sci­en­ce. Se­cond edi­ti­on. Sprin­ger Sci­en­ce + bu­si­ness me­dia LLC, part of sprin­ger Na­tu­re. https://doi.org/10.1007/978-1-4939-8700-9
  4. Bid­lo, M. & Va­si­cek, Z. (2013). Evo­lu­ti­on of cel­lu­lar au­to­ma­ta with con­di­ti­onally matching ru­les. 2013 IEEE Congress on Evo­lu­ti­onary Com­pu­ta­ti­on, 1178–1185. https://doi.org/10.1109/CEC.2013.6557699
  5. Bid­lo, M. (2016). On Rou­ti­ne Evo­lu­ti­on of Complex Cel­lu­lar Au­to­ma­ta IEEE Tran­sacti­ons on Evo­lu­ti­onary Com­pu­ta­ti­on, 20, 742–754. https://doi.org/10.1109/TEVC.2016.2516242
  6. Bid­lo, M. (2019). Com­pa­ri­son of Evo­lu­ti­onary De­ve­lop­ment of Cel­lu­lar Au­to­ma­ta Using Va­ri­ous Rep­re­sen­ta­ti­ons inpro­ce­edings, MEN­DEL, Soft Com­pu­ting Jo­ur­nal, 25(1), 95–102. https://doi.org/10.13164/men­del.2019.1.095
  7. Bi­lan, S. M. (2018). For­ma­ti­on Met­hods, Mo­dels, and Hardwa­re Imple­men­ta­ti­on of Pseu­do­ran­dom Num­ber Ge­ne­ra­tors: Emer­ging Re­se­arch and Op­portu­ni­ti­es. IGI Glo­bal. https://doi.org/10.4018/978-1-5225-2773-2
  8. Bi­lan, S. M., & Al-Zou­bi, S. I. (2019). Handbo­ok of Re­se­arch on In­telli­gent Da­ta Pro­ces­sing and In­forma­ti­on Se­cu­rity Systems. Edi­ted by Hershey, USA: IGI Glo­bal. https://doi.org/10.4018/978-1-7998-1290-6
  9. Bi­lan, S. M., Bi­lan, M. M., & Mo­tornyuk, R. L. (2021). New Met­hods and Pa­ra­digms for Mo­de­ling Dyna­mic Pro­ces­ses Ba­sed on Cel­lu­lar Au­to­ma­ta. IGI Glo­bal. https://doi.org/10.4018/978-1-7998-2649-1
  10. Bi­lan, Ste­pan, El­ho­seny, Mo­ha­med, & He­manth, D. Ju­de (Eds.). (2020). Bi­omet­ric Iden­ti­fi­ca­ti­on Techno­lo­gi­es Ba­sed on Mo­dern Da­ta Mi­ning Met­hods. Sprin­ger. https://doi.org/10.1007/978-3-030-48378-4
  11. Breu­ke­la­ar, R. & B¨ack, T. (2005). Using a ge­ne­tic al­go­rithm to evol­ve be­ha­vi­or in mul­ti di­men­si­onal cel­lu­lar au­to­ma­ta. In Pro­ce­edings of the 2005 Ge­ne­tic and Evo­lu­ti­onary Com­pu­ta­ti­on Con­fe­ren­ce, GEC­CO 2005. ACM, 107–114. https://doi.org/10.1145/1068009.1068024
  12. Cha­vo­ya, A. & Dut­hen, Y. (2007). Use of a ge­ne­tic al­go­rithm to evol­ve an ex­tended ar­ti­fi­ci­al re­gu­la­tory net­work for cell pat­tern ge­ne­ra­ti­on. In GEC­CO 07: Pro­ce­edings of the 9th an­nu­al con[1]fe­ren­ce on Ge­ne­tic and evo­lu­ti­onary com­pu­ta­ti­on, 1062–1062, New York, NY, USA. ACM. https://doi.org/10.1145/1276958.1277167
  13. Chen, Y., Wang, C., Li, H., Yap, J. B. H., Tang, R., & Xu, B. (2020). Cel­lu­lar au­to­ma­ton mo­del for so­ci­al for­ces in­te­rac­ti­on in bu­il­ding evac­ua­ti­on for sus­ta­inab­le so­ci­ety. Sus­ta­inab­le Ci­ti­es and So­ci­ety, 53, 101913. https://doi.org/10.1016/j.scs.2019.101913
  14. El­menre­ich, W. & Fe­her­va­ri, I. (2011). Evol­ving self-or­ga­ni­zing cel­lu­lar au­to­ma­ta ba­sed on neu­ral net­work ge­notypes. In Proc. of the 5th In­terna­ti­onal Con­fe­ren­ce on Self-or­ga­ni­zing Systems. Sprin­ger, 16–25. https://doi.org/10.1007/978-3-642-19167-1_2
  15. Ershov, N. & Kravchuk, A. (2014). Discre­te mo­de­ling using stoc­hastic cel­lu­lar au­to­ma­ta. Bul­le­tin of the Pe­op­les Fri­endship Uni­ver­sity of Rus­sia. Se­ri­es: Mat­he­ma­tics, Com­pu­ter Sci­en­ce, Physics, 2, 359–362.
  16. Gardner, M. (1970). The fan­tastic com­bi­na­ti­ons of John Con­ways new so­li­ta­ire ga­me "Li­fe". Sci­en­ti­fic Ame­ri­can, 4, 120-123. https://doi.org/10.1038/sci­en­ti­fi­ca­me­ri­can1070-120
  17. Mau­ri, Gi­an­carlo, El Ya­cou­bi, Sa­mi­ra, Den­nunzio, Al­berto, Nis­hi­na­ri, Kat­su­hi­ro, & Man­zo­ni, Lu­ca (Eds.). (2018). Lec­tu­re No­tes in Com­pu­ter Sci­en­ce. 13th In­terna­ti­onal Con­fe­ren­ce on Cel­lu­lar Au­to­ma­ta for Re­se­arch and In­dustry, AC­RI 2018, Co­mo, Italy. (Sep­tember 17–21, 2018), Pro­ce­edings, 11115, Sprin­ger. https://doi.org/10.1007/978-3-319-99813-8
  18. Mic­hal Bid­lo, Zde­nek Va­si­cek. (2021). Evo­lu­ti­on of Cel­lu­lar Au­to­ma­ta Using Instruc­ti­on-Ba­sed Appro­ach. WCCI 2012 IEEE World Congress on Com­pu­ta­ti­onal In­telli­gen­ce. Austra­lia, 1–8. https://doi.org/10.1109/CEC.2012.6256475
  19. Mo­ham­mad, Ali Ja­va­he­ri Ja­vid. (2021). Aesthe­tic eval­ua­ti­on of cel­lu­lar au­to­ma­ta cjnfi­gu­ra­ti­ons using spa­ti­al comple­xity and Kol­mo­go­rov comple­xity. Ro­me­ro et al. (Eds.). Evo­MU­SART, Sprin­ger, 147–160. https://doi.org/10.1007/978-3-030-72914-1_10
  20. Mo­tornyuk, R. L., & Bi­lan, S. (2019). The Mo­ving Ob­ject De­tec­ti­on and Re­se­arch Ef­fects of No­ise on Ima­ges Ba­sed on Cel­lu­lar Au­to­ma­ta With a He­xa­go­nal Co­ating Form and Ra­don Transform. Handbo­ok of Re­se­arch on In­telli­gent Da­ta Pro­ces­sing and In­forma­ti­on Se­cu­rity Systems. Edi­ted by Bi­lan, S. M., & Al-Zou­bi, S. I. Hershey, USA: IGI Glo­bal, 330–359. https://doi.org/10.4018/978-1-7998-1290-6.ch013
  21. Roc­ha, L. M. & Hor­dijk, W. (2005). Ma­te­ri­al rep­re­sen­ta­ti­ons: from the ge­ne­tic co­de to the evo­lu­ti­on of cel­lu­lar au­to­ma­ta. Ar­tif Li­fe. 2005 Win­ter-Spring, 11(1-2), 189–214. https://doi.org/10.1162/1064546053278964
  22. Veryko­kou, S., Ioan­ni­dis, C., At­ha­na­si­ou, G., Dou­la­mis, N., & Am­di­tis, A. (2018). 3D re­construc­ti­on of di­sas­ter sce­nes for ur­ban se­arch and res­cue. Mul­ti­me­dia To­ols and Appli­ca­ti­ons, 77(8), 9691–9717. https://doi.org/10.1007/s11042-017-5450-y
  23. Wolfram, S. (1983). Sta­tis­ti­cal mec­ha­nics of cel­lu­lar au­to­ma­ta. Re­vi­ews of Mo­dern Physics, 55(3). https://doi.org/10.1103/Rev­ModPhys.55.601
  24. Wolfram, S. (2002). A new kind of sci­en­ce. Wolfram Me­dia
  25. Yu­ta, Ka­ri­ya­do, Ca­mi­lo, Are­va­lo, & Ju­li­an, Vil­le­gas. (2021). Au­ra­li­za­ti­on of three-di­men­si­onal cel­lu­lar au­to­ma­ta. Ro­me­ro et al. (Eds.). Evo­MU­SART, Sprin­ger, 161–170. https://doi.org/10.1007/978-3-030-72914-1_11