Basic structure of the neurofuzzy control system for a group of mobile robotic platforms

: 77-85
Received: April 07, 2023
Accepted: May 02, 2023

Цитування за ДСТУ: Цмоць І. Г., Опотяк Ю. В., Штогрінець Б. В., Дзюба А. О., Олійник Ю. Ю. Базова структура системи нейронечіткого управління групою мобільних робототехнічних платформ. Український журнал інформаційних технологій. 2023. Т. 5, № 1. С. 77–85.

Citation APA: Tsmots, I. G., Opotyak, Yu. V., Shtohrinets, B. V., Dzyuba, А. О., Oliinyk, Yu. Yu. (2023). Basic structure of the neurofuzzy control system for a group of mobile robotic platforms. Ukrainian Journal of Information Technology, 5(1), 77–85.

Lviv Polytechnic National University, Lviv, Ukraine
Lviv Polytechnic National University, Lviv, Ukraine
Lviv Polytechnic National University, Lviv, Ukraine
Hetman Petro Sahaidachnyi National Army Academy, Lviv, Ukraine
Lviv Polytechnic National University, Lviv, Ukraine

It is shown that the following approaches can be used for group management of mobile robotic platforms (MRP): centralized (concentrated), decentralized (distributed) and hybrid. It was determined that an urgent task is the development of a neurofuzzy management system for the MRP group, which must perform the distribution of tasks between the MRPs, the determination of MRP movement routes, joint planning of works and their synchronization. The requirements for the system of neurofuzzy management of the MRP group are formulated, the main of which are the provision of: effective management of the MRP group; minimization of time for tasks; flexibility and adaptability to changing working conditions; reliable and stable operation when implementing various scenarios; expansion of functions and scaling relative to the number of MRPs; accuracy and reliability of traffic management of each MRP; response to changes in working conditions; uninterrupted work of the MRP group; effective use of MRP resources; reduction of dimensions, weight and energy consumption; management in real time; collecting data on the environment and the state of the MRP; wireless communication between MRP; development of software tools taking into account the distributed architecture; implementation of a programming interface with the possibility of developing additional software and integration with other systems; saving data on the status of all MRPs for further analysis and improving the management of the MRP group. The following main stages of the development of the neurofuzzy control system by the MRP group were identified: problem formulation; analysis of system requirements; hardware design; development of a neurofuzzy control algorithm; software development; testing and tuning; implementation and operation. It is suggested that the development of the system of neurofuzzy control of the MRP group be carried out on the basis of an integrated approach, which includes: methods of neurofuzzy control of the MRP group, artificial neural networks and fuzzy logic; navigation methods, methods of pre-processing and image recognition; methods of intellectual processing and evaluation of data from sensors in conditions of interference and incomplete information; modern methods and algorithms of intelligent traffic control of MRP; modern element base (microcontrollers, systems-on-chip, FPGA, etc.); methods and means of automated design of hardware and software of MRP. It is proposed to implement the neurofuzzy control system by the MRP group on the basis of a problem-oriented approach, which involves a combination of universal software and specialized hardware, which ensures high efficiency of equipment use. The method of time allocation of resources of the storage medium of multiport memory has been improved, which, due to the consideration of the speed of the storage medium and external devices, ensures an increase in the number of devices with conflict-free access to the storage medium.

[1] Pentagon Unmanned Systems Integrated Roadmap 2017–2042.

[2] Monda, S., Pratihar, D. K. (2016). Fuzzy logic-based group formation control of multiple wheeled robots. International Conference on Microelectronics, Computing and Communications (MicroCom), Durgapur, 1–7. 

[3] Melingui, A., Merzouki R.,  Mbede, J. B. (2014). Neuro-fuzzy controller for autonomous navigation of mobile robots. IEEE Conference on Control Applications (CCA), Juan Les Antibes, France, 1052–1057.

[4] Boudjelal, Meftah, Hamza, Teggar. Navigation in multi-robot systems based on the behavioural fuzzy controller. New Trends in Mathematical Sciences 9 Proceeding, 1, 124–129.

[5] Shi, Y., Song, J., Hua, Y., Dong, J., Ren, Z. (2022). Leader-Follower Formation Control for Fixed-Wing UAVs using Deep Reinforcement Learning. 41st Chinese Control Conference (CCC), Hefei, China, 3456–3461.

[6] Hoy, M., Matveev, A. S., Savkin A. V. (2015). Algorithms for collision free navigation of mobile robots in complex cluttered environments: a survey Robotica, 33, 03, 463–497.

[7] Yang, L., Qi, J., Song, D., Xiao, J., Han, J., Xia, Y. (2016). Survey of robot 3D path planning algorithms. J Control Sci Eng, 5.

[8] Glavaski, D., Mario, V.,  Bonkovic, M. (2009). Robot motion planning using exact cell decomposition and potential field methods. Proceedings of the 9th WSEAS international conference on Simulation, modelling and optimization, World Scientific and Engineering Academy and Society (WSEAS), September, 126–131.

[9] Zhuo, Y., Guo, C. (2013). Underactuated ship way-points track control using repetitive learning neurofuzzy. 25th Chinese Control and Decision Conference (CCDC), Guiyang, China, 248–252.

[10] Nyarko, E. K., Peric, N., Petrovic, I. (2005). Experimental investigations of a direct adaptive neurofuzzy controller. Proceedings of 2005 IEEE Conference on Control Applications, CCA, Toronto, ON, Canada, 1051–1056.

[11] Wen-Ran Z. (1997). Neurofuzzy agents and neurofuzzy laws for autonomous machine learning and control. Proceedings of International Conference on Neural Networks (ICNN'97), Houston, TX, USA, 3, 1732–1737.

[12] Yusof, Y., Mansor, H. M. A. H., Ahmad, A. (2016). Formulation of a lightweight hybrid ai algorithm towards self-learning autonomous systems. Proc. of the 2016 IEEE Confer. on Systems, Process and Control (IC-SPC), Melaka, Malaysia, 16‑18 December, 142–147. 2016.7920719

[13] Alves, R. M. F., Lopes, C. R. (2016). Obstacle avoidance for mobile robots: A hybrid intelligent system based on fuzzy logic and artificial neural network. Proc. of the 2016 IEEE Intern. Conf. on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC, Canada, 24–29 July, 1038–1043.

[14] Medina-Santiago, A., Morales-Rosales, L. A., Hernández-Gracidas, C. A., Algredo-Badillo, I., Pano-Azucena, A. D., Orozco Torres, J. A. (2021). Reactive Obstacle – Avoidance Systems for Wheeled Mobile Robots Based on Artificial Intelligence. Applied Sciences, 11(14), 64–68.

[15] Chen, C. L. P., Yu, D., Liu, L. (2019). Automatic leader-follower persistent formation control for autonomous surface vehicles. IEEE Access, 7, 12146–12155.

[16] Wildani, F., Mardiati, R., Mulyana, E., Setiawan, A. E., Nurmalasari, R. R., Sartika, N. (2022). Fuzzy Logic Control for Semi-Autonomous Navigation Robot Using Integrated Remote Control. 8th International Conference on Wireless and Telematics (ICWT), Yogyakarta, Indonesia, 1–5.

[17] Oultiligh, A., Ayad, H., Pozna, C., Mogan, C., Eіbouzekraoui M., Elkari, B. (2020). Obstacle Avoidance using Fuzzy Controller for Unicycle Robot. International Conference on Control, Automation and Diagnosis (ICCAD), Paris, France, 1–6.

[18] Sahloul, S., Benhalima, D., Rekik, C. (2019). Comparative study of hybrid fuzzy logic methods for mobile robot navigation in unknown environments. 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, Tunisia, 170–175.

[19] Najmurrokhman, A., Kusnandar, U., Sunubroto, K., Sadiyoko, A., Iskanto, T. Y. (2019). Mamdani based Fuzzy Logic Controller for A Wheeled Mobile Robot with Obstacle Avoidance Capability. International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE), Bali, Indonesia, 49–53.

[20] Wang, S., Xu, G., Liu, T. Zhu, Y. (2021). Robust Real-time Obstacle Avoidance of Wheeled Mobile Robot based on Multi-Sensor Data Fusion. IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 2383–2387.

[21] Aniculaesei, A., Grieser, J., Rausch, A., Rehfeldt, K. and Warnecke, T. (2018) Toward a Holistic Software Systems Engineering Approach for Dependable Autonomous Systems IEEE/ACM 1st International Workshop on Software Engi­ne­ering for AI in Autonomous Systems (SEFAIAS), Gothenburg, Sweden, pp. 23-30.

[22] Купріненко, О., Мочерад, В., Загребельний, С., & Слюсаренко, О. (2022). Визначення потреби сухопутних військ у наземних роботизованих комплексах. Військово-технічний збірник, 26, 33–41.

[23] Глєбов, В., Жадан, В., Корольов, В., Мормило, Я., Стрімовський, С., Волковой, О., Ганзера, Ю., Липовець, В., & Фолунін, С. (2022). Розроблення бойового наземного роботизованого комплексу важкого класу на базі бронетранспортера БТР-4Е. Військово-технічний збірник, 2), 3–10.

[24] Hirano, K., Ono, T., Kurino H., Koyanagi, M. (1998). A new multiport memory for high performance parallel processor system with shared memory. Proceedings of 1998 Asia and South Pacific Design Automation Conference, Yokohama, Japan, 333–334.