The basic architecture of mobile robotic platform with intelligent motion control system and data transmission protection

: 74-80
Received: November 02, 2021
Accepted: November 23, 2021

Цитування за ДСТУ: Цмоць І. Г., Теслюк В. М., Опотяк Ю. В., Парцей Р. В., Зінько Р. В. Базова архітектура мобільної робототехнічної платформи з інтелектуальною системою управління рухом і захистом передачі даних. Український журнал інформаційних технологій. 2021, т. 3, № 2. С. 74–80.

Citation APA: Tsmots, I. G., Teslyuk, V. M., Opotiak, Yu. V., Parcei, R. V., & Zinko, R. V. (2021). The basic architecture of mobile robotic platform with intelligent motion control system and data transmission protection. Ukrainian Journal of Information Technology, 3(2), 74–80.

Lviv Polytechnic National University, Lviv, Ukraine
Lviv Polytechnic National University, Lviv, Ukraine
Lviv Polytechnic National University, Lviv, Ukraine
Lviv Polytechnic National University, Lviv, Ukraine
Lviv Polytechnic National University, Lviv, Ukraine

The requirements for a mobile robotic platform (MRP) with an intelligent traffic control system and data transmission protection are determined. Main requirements are the reduction of dimensions, energy consumption, and cost; remote and intelligent autonomous traffic control; real-time cryptographic data protection; preservation of working capacity in the conditions of action of external factors; adaptation to customer requirements; ability to perform tasks independently in conditions of uncertainty of the external environment. It is proposed to develop a mobile robotic platform based on an integrated approach including: navigation methods, methods of pre-processing and image recognition; modern methods and algorithms of intelligent control, artificial neural networks, and fuzzy logic; neuro-like methods of cryptographic data transmission protection; modern components and modern element base; methods of intellectual processing and evaluation of data from sensors in the conditions of interference and incomplete information; methods and means of automated design of MRP hardware and software. The following principles were chosen for the development of a mobile robotic platform with an intelligent control system and cryptographic protection of data transmission: hierarchical construction of an intelligent control system; systematicity; variable composition of equipment; modularity; software openness; compatibility; specialization and adaptation of hardware and software to the structure of algorithms for data processing and protection; use of a set of basic design solutions. The basic architecture of a mobile robotic platform with an intelligent traffic control system and data transmission protection has been developed, which is the basis for the construction of mobile robotic platforms with specified technical and operational parameters. To implement neuro-like tools, the method of tabular-algorithmic calculation of the scalar product was improved, which due to the simultaneous formation of k macroparticle products provides k times reduction of the time of the scalar product calculation.

  1. Aleksandrov, V., Vetlugin, R., & Makarenko, A. (2018). Vzgliady voennykh spetcialistov SShA na boevoe primenenie nazemnykh robotekhnicheskikh kompleksov. Zarubezhnoe voennoe obozrenie, 6, 39–43. [In Russian].
  2. Alves, R. M. F., & Lopes, C. R. (2016). Obstacle avoidance for mobile robots: A hybrid intelligent system based on fuzzy logic and artificial neural network. In Proc. of the 2016 IEEE Intern. Conf. on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC, Canada, 24-29 July 2016, 1038-1043.
  3. Bodiansьkii, Ye. V. ta in. (2016). Analiz ta obroblennia potokiv danikh zasobami obchisliuvalьnogo intelektu. Monografiia. Lьviv: Vid-vo Lьviv. politekhniki. [In Ukrainian].
  4. Chen, C. L. P., Yu, D., & Liu, L. (2019). Automatic leader-follower persistent formation control for autonomous surface vehicles. IEEE Access, 7, 12146-12155.
  5. Denysyuk, P., Teslyuk, V., & Chorna, I. (2018). Development of mobile robot using LIDAR technology based on Arduino controller. 14th International Conference on Perspective Technologies and Methods in MEMS Design, MEMSTECH 2018, Proceedings, 240–244.
  6. Dusan, Glavaski, Volf, Mario, & Bonkovic, Mirjana (2009). Robot motion planning using exact cell decomposition and potential field methods. Proceedings of the 9th WSEAS International conference on Simulation, modelling and optimization, World Scientific and Engineering Academy and Society (WSEAS).
  7. Hoy, M., Matveev, A. S., & Savkin, A. V. (2015). Algorithms for collision free navigation of mobile robots in complex cluttered environments: a survey. Robotica, 33(3), 463–497.
  8. Ignatov, A. V., Bogomolov, S. N., & Fedianin, N. D. (2018). K voprosu o razvitii boevykh nazemnykh robototekhnicheskikh kompleksov. Tekhnologiia proizvodstva sistem i kompleksov. Izvestiia TulGU. Tekhnicheskie nauki, 11, 353-358. [In Russian].
  9. Kellman, M., Rivest, F., Pechacek, A., Sohn, L., & Lustig, M. (2017). Barker-Coded node-pore resistive pulse sensing with built-in coincidence correction. 2017 IEEE Intern. Conf. on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, 1053-1057.
  10. Matviichuk, K., Teslyuk, V., & Teslyuk, T. (2016). Vision system model for mobile robotic systems. Proceeding of the KhIIh International Conference "Perspective Technologies and Methods in MEMS Design", MEMSTECH2016, 20-24 April 2016, Polyana, Lviv, Ukraine, 104-106.
  11. Medina-Santiago, A., Morales-Rosales, L. A., Hernández-Gracidas, C. A., Algredo-Badillo, I., Pano-Azucena, A. D., & Orozco Torres, J. A. (2021). Reactive Obstacle – Avoidance Systems for Wheeled Mobile Robots Based on Artificial Intelligence. Applied Sciences, 11(14), 6468.
  12. Palagin, A. V., & Iakovlev, Iu. S. (2017). Osobennosti proektirovaniia kompьiuternykh sistem na kristalle PLIS. Matematicheskie mashiny i sistemy, 2, 3-14. [In Russian].
  13. Pentagon Unmanned Systems Integrated Roadmap 2017-2042 (2018). USNI News. Retrieved from:
  14. Pilsu, Kim, Eunji, Jung, Sua, Bae, Kangsik, Kim & Taikyong, Song, (2016). Barker-sequence-modulated golay coded excitation technique for ultrasound imaging. 2016 IEEE International Ultrasonics Symposium (IUS), Tours, 1-4.
  15. Tsmots, I., Teslyuk, V., & Vavruk, I. (2013). Hardware and software tools for motion control of mobile robotic system. 12th International Conference "The Experience of Designing and Application of CAD Systems in Microelectronics", CADSM 2013, 368.
  16. Yang, L., Qi, J., Song, D., Xiao, J., Han, J., & Xia, Y. (2016). Survey of robot 3D path planning algorithms / J Control Sci Eng , p. 5.
  17. Yusof, Y., Mansor, H. M. A. H., & Ahmad, A. (2016). Formulation of a lightweight hybrid ai algorithm towards self-learning autonomous systems. In Proc. of the 2016 IEEE Confer. on Systems, Process and Control (IC-SPC), Melaka, Malaysia, 16-18 December 2016, 142-147.