SOFTWARE SYSTEM FOR AUTOMATIC DIAGNOSIS OF BREAST CANCER

2025;
: 35-43
https://doi.org/10.23939/ujit2025.02.035
Received: October 02, 2025
Revised: October 28, 2025
Accepted: October 30, 2025

Цитування за ДСТУ: Березький О. М., Лящинський П. Б. Програмна система автоматичного діагностування раку молочної залози. Український журнал інформаційних технологій. 2025, т. 7, № 2. С. 35-43.
Citation APA: Berezsky, O. M., & Liashchynskyi, P. B. (2025). Software system for automatic diagnosis of breast cancer. Ukrainian Journal of Information Technology, 7(2), 35-43. https://doi.org/10.23939/ujit2025.02.35

1
West Ukrainian National University, Ternopil, Ukraine
2
West Ukrainian National University, Ternopil, Ukraine

The extremely pressing issue of breast cancer diagnosis, which remains one of the leading causes of mortality, requires innovative approaches to improve the accuracy and speed of cancer diagnosis.
The paper substantiates the relevance of the problem of creating a comprehensive software system for automatic diagnosis of breast cancer, which is an important step in improving the accuracy and efficiency of oncological diagnosis. An approach to the development of such a system is proposed, which includes modules for biomedical image segmentation, classification, identification of informative features, automatic diagnosis, image synthesis, data set management, neural network models managements, metrics, and user management. The functional requirements for the software were developed and its architecture was designed in accordance with the principle of single responsibility: each module performs a clearly defined function, which ensures flexibility, scalability, and ease of further expansion of the system. The implementation was carried out in the form of a modern web application using Next.js, FastAPI, PyTorch, MongoDB, OpenCV, and Mantine UI technologies. The client-server architecture with support for cloud infrastructure allows for efficient processing of large amounts of medical data, ensuring reliability, performance, and high availability of the system. The database structure was designed in the form of a logical UML class diagram, which ensures reliable information management, support for CRUD operations, and compliance with the requirements for maintaining the integrity and confidentiality of medical data. Experimental studies have shown the effectiveness of neural networks in biomedical image segmentation and classification tasks, in particular for cell isolation, marker evaluation, and cancer subtype identification. The results of the study are of practical value and can be implemented in the activities of medical institutions, as well as used for the further development of intelligent decision support systems in the field of digital medicine.

1. Habuza, T., Al-Kafri, A., Alsalah, H., Al-Busaidi, S. S., Al-Rawahi, F. R., & Al-Marzooqi, F. I. (2021). AI applications in robotics, diagnostic image analysis and precision medicine: Current limitations, future trends, guidelines on CAD systems for medicine. Informatics in Medicine Unlocked, 24, 100596. https://doi.org/10.1016/j.imu.2021.100596
2. Nabok, A. I. (2023). Prevalence and incidence of breast cancer in Ukraine. Wiad Lek, 76(10), 2219–2223. http://dx.doi.org/ 10.36740/WLek202310114
3. Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: a cancer journal for clinicians, 73(1). https://doi.org/10.3322/caac.21871
4. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M.,… & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
5. Srikantamurthy, M. M., Rallabandi, V. S., Dudekula, D. B., Natarajan, S., & Park, J. (2023). Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning. BMC Medical Imaging, 23(1), 19. http://dx.doi.org/10.1186/s12880-023-00964-0
6. Al-Jabbar, M., Alshahrani, M., Senan, E. M., & Ahmed, I. A. (2023). Analyzing histological images using hybrid techniques for early detection of multi-class breast cancer based on fusion features of CNN and handcrafted. Diagnostics, 13(10), 1753. http://dx.doi.org/10.3390/diagnostics13101753
7. Miranda Ruiz, F., Lahrmann, B., Bartels, L., Krauthoff, A., Keil, A., Härtel, S.,… & Grabe, N. (2023). CNN stability training improves robustness to scanner and IHC-based image variability for epithelium segmentation in cervical histology. Frontiers in Medicine, 10, 1173616. http://dx.doi.org/10.3389/fmed. 2023.1173616
8. Zaha, D. C. (2014). Significance of immunohistochemistry in breast cancer. World journal of clinical oncology, 5(3), 382. https://doi.org/10.5306/wjco.v5.i3.382
9. Aswathy, M. A., & Mohan, J. (2020). Analysis of machine learning algorithms for breast cancer detection. In Handbook of Research on Applications and Implementations of Machine Learning Techniques (pp. 1–20). IGI global. https://doi.org/ 10.4018/978-1-5225-9902-9.ch001
10. Dzulkifli, F. A., Mashor, M. Y., & Jaafar, H. (2021). Colour thresholding-based automatic Ki67 counting procedure for immunohistochemical staining in meningioma. International Journal of Computational Vision and Robotics, 11(3), 279–298. http://doi.org//10.1504/IJCVR.2021.115160
11. Razavi, S., Khameneh, F. D., Serteli, E. A., Cayir, S., Cetin, S. B., Hatipoglu, G.,… & Kamasak, M. (2018, June). An automated and accurate methodology to assess ki-67 labeling index of immunohistochemical staining images of breast cancer tissues. In 2018 25th International Conference on Systems, Signals and Image Processing (IWSSIP) (pp. 1–5). IEEE. http://doi.org// 10.1109/IWSSIP.2018.8439184
12. Syrykh, C., Abreu, A., Amara, N., Siegfried, A., Maisongrosse, V., Frenois, F. X.,… & Brousset, P. (2020). Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning. npj Digital Med. http://doi.org//10.1038/s41746-020-0272-0
13. Oscanoa, J., Doimi, F., Dyer, R., Araujo, J., Pinto, J., & Castaneda, B. (2016, August). Automated segmentation and classification of cell nuclei in immunohistochemical breast cancer images with estrogen receptor marker. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 2399–2402). IEEE. http://doi.org//10.1109/EMBC.2016.7591213
14. Berezsky, O. M., Liashchynskyi, P. B., Liashchinskyi, P. B., Sukhovych, A. R., & Dolynyuk, T. M. (2019). Synthesis of biomedical images based on generative adversarial networks. Ukrainian Journal of Information Technology, 1(1), 35-40. https://doi.org/10.23939/ujit2019.01.035
15. Berezkyi, O. M., Pitsun, O. Y., & Dubchak, L. O. (2018). Means of artificial intelligence in automated systems microscopy. Artificial Intelligence, 2(77), 33-42. Retrieved from: http://jnas.nbuv.gov.ua/article/UJRN-0000999775
16. Berezsky, O. M., et al. (2017). Methods, algorithms and software tools for processing biomedical images. Economic Thought, TNEU.
17. Liashchynskyi, P., et al. (2023). Method and software tool for generating artificial databases of biomedical images based on deep neural networks. In CEUR Workshop Proceedings, 3609, 15–26.
18. Berezsky, O., Liashchynskyi, P., Pitsun, O., & Izonin, I. (2024). Synthesis of Convolutional Neural Network architectures for biomedical image classification. Biomedical Signal Processing and Control, 95, 106325.
19. Berezsky, O. M., & Liashchynskyi, P. B. (2021). Comparison of generative adversarial networks architectures for biomedical images synthesis. Applied Aspects of Information Technology, 4(3), 250-260. https://doi.org/10.1016/j.bspc.2024.106325
20. Yanase, J., & Triantaphyllou, E. (2019). A systematic survey of computer-aided diagnosis in medicine: Past and present developments. Expert Systems with Applications, 138, 112876.
21. Demuth, S., Maubon, A., Cotton, F., Armspach, J.-P., & Vian, D. (2024). Clinical applications of deep learning in neuroinflammatory diseases: A scoping review. Revue Neurologique. https://doi.org/10.1016/j.neurol.2024.04.004
22. Fang, N., Xu, J., Zhang, H., Cui, S., Jiang, H., Wang, J., Zhang, Y., & Dong, Q. (2024). Computer-aided multiphoton microscopy diagnosis of five different primary architecture subtypes of meningiomas. Laboratory Investigation, 100324. https://doi.org/10.1016/j.labinv.2024.100324
23. Brown, M. S., McNitt-Gray, M. F., Yankelevitz, D. F., Henschke, C. I., & Aberle, D. R. (2007). An architecture for computer-aided detection and radiologic measurement of lung nodules in clinical trials. Cancer Informatics, 4, 117693510700400. https://doi.org/ 10.1177/117693510700400001
24. Stoitsis, J., Gatzounis, G., Vlachos, N., & Vlachos, P. (2006). Computer aided diagnosis based on medical image processing and artificial intelligence methods. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 569(2), 591-595. https://doi.org/10.1016/j.nima.2006.08.134
25. Kim, S. J., Park, E. K., Choi, Y., & Han, M. H. (2010). Comparison of two software versions of a commercially available computer-aided detection (CAD) system for detecting breast cancer. Acta Radiologica, 51(5), 482-490. https://doi.org/ 10.3109/02841851003709490
26. Al-antari, M. A., Han, S.-M., & Kim, T.-S. (2017). An automatic computer-aided diagnosis system for breast cancer in digital mammograms via deep belief network. Journal of Medical and Biological Engineering, 38(3), 443-456. https://doi.org/10.1007/ s40846-017-0321-6
27. Halalli, B., & Makandar, A. (2018). Computer aided diagnosis-medical image analysis techniques. In Breast imaging, 85, 85-109.
28. Naas, M., Ghouali, D., Boughamoura, H., & Abed, K. (2025). Deep learning based computer aided diagnosis (CAD) tool supported by explainable artificial intelligence for breast cancer exploration. Applied Intelligence, 55(7).
29. Baker, J. A., Rosen, E. L., Lo, J. Y., & Gimenez, E. I. (2003). Computer-aided detection (CAD) in screening mammography: Sensitivity of commercial CAD systems for detecting architectural distortion. American Journal of Roentgenology, 181(4), 1083-1088. https://doi.org/10.2214/ajr.181.4.1811083
30. Oza, P., Sharma, P., & Patel, S. (2022). A drive through computer-aided diagnosis of breast cancer: a comprehensive study of clinical and technical aspects. In Recent Innovations in Computing: Proceedings of ICRIC 2021, 1, 233–249.