The issue of determining cutting forces in machining processes is relevant due to the need to improve the efficiency, quality, and accuracy of hard-to-machine materials. In particular, preventive heating of the workpiece can reduce the mechanical resistance of the machined material, which reduces the load on the tool and increases its service life. The article aims to study and analyze the equipment design for measuring cutting forces under conditions of preventive heating. The article discusses the key features of various types of dynamometers, including piezoelectric, strain gauge, mechanical, and hydraulic, which are used to record force effects while processing multiple materials. The advantages and limitations of each dynamometer type are presented, considering specific operating conditions, including temperature, possible deformations, and resistance to mechanical stress. The design features of equipment for studying cutting forces under conditions of preventive heating are described. The article also focuses on the measurement range, a critical parameter when working with different materials. The choice of metrology equipment depends on the workpiece's material, the processing temperature regime, and accuracy requirements. Correct equipment setup and calibration ensure high accuracy and stability of measurements even in difficult conditions, such as preventive heating.
[1]. D. A. Stephenson, end J. S. Agapiou, «Metal Cutting Theory and Practice», Third Edition, CRC Press, 947 p., 2018. doi: 10.1201/9781315373119.
[2]. H. A. Kishawy, end A. Hosseini, Machining Difficult-to-Cut Materials, Cham: Springer International Publishing, 2019. doi: 10.1007/978-3-319-95966-5
[3]. https://www.kistler.com/INT/en/c/force-sensors/CG21-force-sensors/ Piezoelectric force sensors.
[4]. https://www.pcb.com/ Force Sensors for Research & Development
[5]. A. Khairul, end Yohanes, «Rancang bangun dinamometer berbasiskan strain gauge dengan batang sensor tipe four square stalk untuk pengukuran gaya potong mesin bubut», Jurnal Online Mahasiswa Fakultas Teknik Universitas Riau, vol. 3, no. 2, pp. 1-7, 2016.
[6]. U. Şeker, A. Kurt, end İ. Çiftçi, «Design and construction of a dynamometer for measurement of cutting forces during machining with linear motion», Materials & Design, vol. 23, no. 4, pp. 355–360, 2002. doi:10.1016/s0261-3069(02)00013-4
[7]. S. Yaldız, end F. Ünsaçar , «A dynamometer design for measurement the cutting forces on turning», Measurement, vol. 39, no. 1, pp. 80–89, 2006. doi:10.1016/j.measurement.2005.07.008
[8]. R. Muhammad, «Hot Ultrasonically Assisted Turning of Ti-15V3Al3Cr3Sn: Experimental and Numerical Analysis», PhD Thesis, Loughborough University, 2013.
[9]. B. Maher, V. Wagner, G. Dessein, J Sallabery, and D. Lallement, “An Experimental Investigation of Hot Machining with Induction to Improve Ti-5553 Machinability”, Applied Mechanics and Materials, vol. 62, pp. 67-76, 2011. doi: 10.4028/www.scientific.net/AMM.62.67
[10]. A. K. Parida, end K. Maity, «Comparison the machinability of Inconel 718, Inconel 625 and Monel 400 in hot turning operation». Engineering Science and Technology, an International Journal, vol. 21, no. 3, pp. 364-370, 2018. doi: 10.1016/j.jestch.2018.03.018
[11]. R. Muhammad, N. Ahmed, H. Ullah, A. Roy, end V. V. Silberschmidt «Hybrid machining process: experimental and numerical analysis of hot ultrasonically assisted turning», The International Journal of Advanced Manufacturing Technology, vol. 97, pp. 2173-2192, 2018. doi: 10.1007/s00170-018-2087-6
[12]. C. Wang, R. Rakowski, K. Cheng, «Design and analysis of a piezoelectric film embedded smart cutting tool», Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 227, no. 2, pp. 254-260, 2013. doi:10.1177/0954405412462785
[13]. N. Vorkapić, B. Kokotović, «Synthesis and analysis of the tool dynamometer for turning operations», in: Proceedings of the 13th international scientific conference mma 2018-flexible technologies, Novi Sad, Serbia 28-29 september 2018, University of Novi Sad-Faculty of Technical Sciences, pp. 99-102, 2018.
[14]. X. Chen, K. Cheng, end C. Wang, «Design of a smart turning tool with application to in-process cutting force measurement in ultraprecision and micro cutting», Manufacturing Letters, vol. 2, no. 4, pp. 112-117, 2014. doi: 10.1016/j.mfglet.2014.07.001
[15]. M. Sadílek, J. Dubský, Z. Sadílková, end Z. Poruba, «Cutting forces during turning with variable depth of cut», Perspectives in Science, vol. 7, pp. 357–363, 2016. doi:10.1016/j.pisc.2015.11.055
[16]. K. Venkatesan, K. Manivannan, S. Devendiran, A.T. Mathew, N.M. Ghazaly, Aadhavan, S. M. Neha Benny, «Study of forces, surface finish and chip morphology on machining of inconel 825», Procedia Manufacturing, vol. 30, pp. 611–618, 2019. doi: 10.1016/j.promfg.2019.02.086