INFLUENCE OF AXIAL TOOL FEED ON UNDEFORMED CHIP GEOMETRIES IN POWER SKIVING GEAR CUTTING

1
Lviv Polytechnic National University
2
Departament Automotive Engineering and Design, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava
3
Slovak University of Technology in Bratislava
4
Lviv Polytechnic National University

The purpose of this article was to formulate recommendations for developing strategies for multi-tool cutting of gear wheels that ensure a productive and reliable process for ensuring the accuracy and quality of machined surfaces.  The determination of the effective axial feed rate to achieve maximum productivity has not yet been fully explored. The objective of this article is to ascertain and examine the impact of axial feed on the chip formation process during the cutting of the gear rim. The objective is to achieve optimal cutting conditions in each cut, thereby increasing tool life and process reliability, while concomitantly reducing processing time. The challenge of power skiving technology is to determine the effective cutting mode parameters, which include axial feed and cutting speed, depth of cut, and number of passes, as well as tool angle and cutting edge geometry of the skiving tooth. It is recommended that the optimal cutting parameters for the corresponding gear be determined based on the obtained results.

[1]. W. von Pittler "Verfahren zum Schneiden von Zahnradern mittels eines zahnradartigen, an den Stirnflachen der Zahne mit Schneidkanten versehenen Schneidwerkzeugs". Patent specification n. 243514, Berlin. 1910
[2]. Stadtfeld, H.J. "Power Skiving of Cylindrical Gears on Different Machine Platforms", Gear Technology, Volume 1, pp. 52-62, 2014. [online] Available at: https://www.geartechnology.com/ext/resources/issues/0114x/power-skiving.pdf [Accessed: January/February 2014
[3]. N. Tapoglou, "Calculation of non-deformed chip and gear geometry in power skiving using a CAD-based simulation", International Journal of Advanced Manufacturing Technology, vol. 100, no. 5-8, pp. 1779-1785, 2019. DOI:10.1007/s00170-018-2790-3
https://doi.org/10.1007/s00170-018-2790-3
[4]. P. McCloskey, A. Katz, L. Berglind, K. Erkorkmaz, E. Ozturk, F. Ismail, "Chip geometry and cutting forces in gear power skiving", CIRP Annals, vol. 68 no. 1, pp. 109-112, 2019. DOI:10.1016/j.cirp.2019.04.085
https://doi.org/10.1016/j.cirp.2019.04.085
[5]. E. Guo, R. Hong, X. Huang, and C. Fang, "A novel power skiving method using the common shaper cutter", International Journal of Advanced Manufacturing Technology, vol. 83, no. 1, pp. 157-165, 2016. DOI: 10.1007/s00170-015-7559-3.
https://doi.org/10.1007/s00170-015-7559-3
[6]. E. Guo, R. Hong, X. Huang, and C. Fang, "Research on the design of skiving tool for machining involute gears", Journal of Mechanical Science and Technology, vol. 28, no. 12, pp. 5107-5115, 2014. DOI:10.1007/s12206-014-1133-z
https://doi.org/10.1007/s12206-014-1133-z
[7]. A. Hühsam, Modellbildung und experimentelle Untersuchung des Wälzschälprozesses. Karlsruhe: Universität Karlsruhe, Institut für Werkzeugmaschinen und Betriebstechnik, 2002.
[8]. A. Bechle, Beitrag zur prozesssicheren Bearbeitung beim Hochleistungsfertigungsverfahren Wälzschälen. Aachen: Shaker, 2006.
[9]. F. Klocke, C. Brecher, C. Löpenhaus, P. Ganser, J. Staudt, and M. Krömer, "Technological and simulative analysis of power skiving", Procedia CIRP, vol. 50, no. 2, pp. 773-778, 2016. DOI:10.1016/j.procir.2016.05.052
https://doi.org/10.1016/j.procir.2016.05.052
[10]. C. Y. Tsai, "Mathematical model for design and analysis of power skiving tool for involute gear cutting", Mechanism and Machine Theory, vol. 101, no. 1, pp. 195-208, 2016. DOI:10.1016/j.mechmachtheory.2016.03.021
https://doi.org/10.1016/j.mechmachtheory.2016.03.021
[11]. C. Y. Tsai, "Simple mathematical approach for analyzing gear tooth profile errors of different gears cut using same power-skiving tool", Mechanism and Machine Theory, vol. 177, no. 1, pp. 105042, 2022. DOI:10.1016/j.mechmachtheory.2022.105042.
https://doi.org/10.1016/j.mechmachtheory.2022.105042
[12]. C. Kühlewein, Untersuchung und Optimierung des Wälzschälverfahrens mit Hilfe von 3D-FEM-Simulation: 3D-FEM Kinematik-und Spanbildungssimulation, 2013.
[13]. http://www.tj-jcmt.com/en/product-25003-84092.html [Accessed: March 2025]
[14]. Modellbasierte Auslegung von Mehrschnittstrategien beim Wälzschälen: Dissertation zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften Dr.-Ing., [Ph.D. dissertation], [Institution unspecified], [Location unspecified], [n.d.].
[15]. I. Hrytsay and A. Slipchuk, "Features of using the power skiving method for multi-pass cutting of internal gears", Archive of Mechanical Engineering, vol. 71, no. 2, pp. 189-211, 2024. DOI: 10.24425/ame.2024.149636
https://doi.org/10.24425/ame.2024.149636
[16]. А.M. Slipchuk, "Modelyuvannya nedeformovanoyi struzhky, utvorenoyi pid chas narizannya vnutrishnʹoho zubchastoho vintsya metodom "power skiving" [Modelling of undeformed chips formed during the cutting of an internal gear rim using the power skiving method]", Visnyk Natsionalʹnoho tekhnichnoho universytetu «KHPI». Seriya: Novi rishennya u suchasnykh tekhnolohiyakh [Bulletin of the National Technical University "KhPI". Series: New solutions in modern technologies], Vol. 3, no 17, pp. 26-33, 2023.[in Ukrainian]. DOI:10.20998/2413-4295.2023.03.04
https://doi.org/10.20998/2413-4295.2023.03.04
[17]. A. Slipchuk "Modeling of undeformed chip in power skiving gear cutting process". Scientific Journal of TNTU (Tern.), vol 111, no 3, pp. 84-96, 2023. DOI.org/10.33108/visnyk_tntu2023.03.084
https://doi.org/10.33108/visnyk_tntu2023.03.084