The results of the study of the radial-circular method of gear cutting are presented. The cutting and shaping of teeth is carried out by a thin disc cutter under conditions of continuous generating, with a combination of axial feed of the cutter and its constructive radial movement due to eccentric installation on the spindle axis. The value of the eccentricity is determined by the gear module. A graph-analytical model was used to calculate the parameters of the cuts, and the cutting force and torque on the cutter axis were modeled using these data. It was found that the cutting process is characterized by significant load variations. The areas of maximum tool wear were predicted. It is shown that for under the same initial conditions, the cutting time using this method is two times less than the time of hobbing. Since a disc cutter can cut gears in a wide range of modules, this process is one of the most versatile. This method opens up great possibilities for the restoration and repair of gears and drives manufactured to standards other than those adopted in Europe.
[1] E. M. Blagut, "Sposib narizky zubchastykh kolis synusoidalnoi peredachi Blahuta" ["Method for cutting gears of the Blagut sinusoidal transmission"], UA Patent 73550, Publication bulletin No. 8, 2005. [in Ukrainian].
[2] I. E. Hrytsay, "Sinusoidal Gears and Alternative Method of Tooth Generation" in Advances in Gear Theory and Gear Cutting Tool Design, S. P. Radzevich, M. Storchak, Eds. Cham, Switzerland: Springer Publ., 2022, pp. 233-254.
https://doi.org/10.1007/978-3-030-92262-7_8
[3] I.E. Hrytsay, S.I. Gromnyuk, "Pidvyshchennia efektyvnosti protsesu narizannia zubchastykh kolis na osnovi radialno-obertovoho metodu v umovakh obkochuvannia" ["Increasing the efficiency of the process of cutting gears on the basis of the radial-rotating method in the conditions of generating"], Zbirnyk naukovykh prats Donbaskoi derzhavnoi mashynobudivnoi akademii [Collection of scientific works of Donbass State Machine-Building Academy], vol. 32, pp. 226-229, 2013. [in Ukrainian].
[4] S. I. Hromniuk, I. E. Hrytsaj, "The study of the cutting force and its components in radial-circular cutting of the gears", Optymizatsiia vyrobnychykh protsesiv i tekhn. kontrol u mashynobuduvanni ta pryladobuduvanni [Optimization of production processes and technical control in mechanical engineering and instrumentation], issue 786, pp. 61-67, 2014.
[5] M. Inui, Y. Huang, H. Onozuka, N. Umezu, "Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation", Procedia Manufacturing, vol. 48, pp. 520-527, 2020.
https://doi.org/10.1016/j.promfg.2020.05.078
[6] B. Vargas, M. Zapf, J. Klose, F. Zanger, V. Schulze, "Numerical modelling of cutting forces in gear skiving", Procedia CIRP, vol. 82, pp. 455-460, 2019.
https://doi.org/10.1016/j.procir.2019.04.039
[7] T. Bergs, A.Georgoussis, C.Löpenhaus, "Development of a numerical simulation method for gear skiving", Procedia CIRP, vol. 88, pp. 352-357, 2020.
https://doi.org/10.1016/j.procir.2020.05.061
[8] P. McCloskey, A. Katz, L. Berglind, K. Erkorkmaz, E. Ozturk, F. Ismail, "Chip geometry and cutting forces in gear power skiving", CIRP Annals, vol. 68, issue 1, pp. 109-112, 2019.
https://doi.org/10.1016/j.cirp.2019.04.085
[9] T. Nishikawa, S. Shimada, G. Kobayashi, Z. Ren, N. Sugita, "Using Power Skiving to Increase the Efficiency and Precision of Internal Gear Cutting", Komatsu Tech. Rep., vol. 64, pp. 1-7, 2018.
[10] C. Janßen, J. Brimmers, T. Bergs, "Validation of the plane-based penetration calculation for gear skiving", Procedia CIRP, vol. 99, pp. 220-225, 2021.
https://doi.org/10.1016/j.procir.2021.03.034
[11] M. Inui, Y. Huang, H. Onozuka, N. Umezu, "Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation", Procedia Manufacturing, vol. 48, pp. 520-527, 2020.
https://doi.org/10.1016/j.promfg.2020.05.078
[12] C. Janßen, J. Brimmers, T. Bergs, "Validation of the plane-based penetration calculation for gear skiving", Procedia CIRP, vol. 99, pp. 220-225, 2021.
https://doi.org/10.1016/j.procir.2021.03.034
[13] H. Onozuka, F. Tayama, Y. Huang, M. Inui, "Cutting force model for power skiving of internal gear", Journal of Manufacturing Processes, vol. 56, pp. 1277-1285, 2020.
https://doi.org/10.1016/j.jmapro.2020.04.022
[14] N. Tapoglou, "Calculation of non-deformed chip and gear geometry in power skiving using a CAD-based simulation", The International Journal of Advanced Manufacturing Technology, vol. 100, pp. 1779-1785, 2019.
https://doi.org/10.1007/s00170-018-2790-3
[15] T. Bergs, A. Georgoussis, C. Löpenhaus, "Development of a numerical simulation method for gear skiving", Procedia CIRP, vol. 88, pp. 352-357, 2020.
https://doi.org/10.1016/j.procir.2020.05.061
[16] P. McCloskey, A. Katz, L. Berglind, K. Erkorkmaz, E. Ozturk, F. Ismail, "Chip geometry and cutting forces in gear power skiving", CIRP Annals, vol. 68, no. 1, pp. 109-112, 2019.
https://doi.org/10.1016/j.cirp.2019.04.085
[17] A. Antoniadis, "Gear skiving-CAD simulation approach", Computer-Aided Design, vol. 44, issue 7, pp. 611-616, 2012.
https://doi.org/10.1016/j.cad.2012.02.003
[18] A. Antoniadis, N. Vidakis, N. Bilalis, "A simulation model of gear skiving", Journal of Materials Processing Technology, vol. 146, issue 2, pp. 213-220, 2004.
https://doi.org/10.1016/j.jmatprotec.2003.10.019
[19] M. Inui, Y. Huang, H. Onozuka, N. Umezu, "Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation", Procedia Manufacturing, vol. 48, pp.520-527, 2020.
https://doi.org/10.1016/j.promfg.2020.05.078
[20] B. Vargas, M. Zapf, J. Klose, F. Zanger, V. Schulze, "Numerical modelling of cutting forces in gear skiving", Procedia CIRP, vol. 82, pp. 455-460, 2019.
https://doi.org/10.1016/j.procir.2019.04.039
[21] H. Onozuka, F. Tayama, Y. Huang, M. Inui, "Cutting force model for power skiving of internal gear", Journal of Manufacturing Processes, vol. 56, pp.1277-1285, 2020.
https://doi.org/10.1016/j.jmapro.2020.04.022
[22] H. Onozuka, F. Tayama, Y. Huang, M. Inui, "Cutting force model for power skiving of internal gear", Journal of Manufacturing Processes, vol. 56, part B, pp.1277-1285, 2020.
https://doi.org/10.1016/j.jmapro.2020.04.022
[23] I. Hrytsay, V. Stupnytskyy, V. Topchii, "Improved Method of Gear Hobbing Computer Aided Simulation", Archive of mechanical engineering, vol. 66, no. 4, рp. 475-494, 2019.
https://doi.org/10.24425/ame.2019.131358
[24] I. Hrytsay, V. Topchij, A. Kuk, "Computer 3D modelling of chip geometry and force field in the hobbing process", Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 4, no. 2, pp. 68-79, 2018.
https://doi.org/10.23939/ujmems2018.02.068