Огляд можливостей алгоритму JPEG-LS для його використання із сканерами земної поверхні

1
Національний університет «Львівська політехніка», кафедра ЕОМ
2
Національний університет «Львівська політехніка» кафедра ЕОМ
3
Національний університет "Львівська політехніка", кафедра електронних обчислювальних машин

В статті досліджуються можливості реалізації алгоритму стиснення зображень JPEG-LS на програмованих логічних інтегральних схемах (ПЛІС) для обробки монохромних відеопотоків від сканерів земної поверхні. Проведено порівняння програмних реалізацій алгоритмів, їх рівень стиснення та час виконання. Розглянуто способи покращення роботи ПЛІС, використовуючи паралельну обробку даних та оптимізовані структури даних для прискорення процесів стиснення та відновлення. Результати тестування програмної реалізації алгоритму демонструють середню швидкість обробки 179,2Мбіт/с при стисненні та 169,6Мбіт/с при відновленні зображень. Можливо досягнути рівня стиснення від 1,2 до 7,4 залежно від складності зображення.

  1. M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS,” IEEE Transactions on Image Processing, vol. 9, no. 8, pp. 1309–1324, Aug. 2000, doi: 10.1109/83.855427.
  2. X. Dong and P. Li, “Implementation of A Real-Time Lossless JPEG-LS Compression Algorithm Based on FPGA,” in 2022 14th International Conference on Signal Processing Systems (ICSPS), Nov. 2022, pp. 523–528. doi: 10.1109/ICSPS58776.2022.00096.
  3. S. M. S. H. M. A. Hossain, “Classification on Image Compression Methods: Review Paper,” International Journal of Data Science Research, vol. 1, no. 1, Art. no. 1, Apr. 2018, Accessed: Sep. 25, 2024. [Online]. Available: http://ojs.mediu.edu.my/index.php/IJDSR/article/view/1395
  4. C. Dunn, “Smile! You’re on RLE!,” The Transactor, vol. 7 (6), pp. 16–18.
  5. “LZW Compression Encoding.” Accessed: Oct. 16, 2024. [Online]. Available: https://www.loc.gov/preservation/digital/formats/fdd/fdd000135.shtml
  6. T. H. Cormen, Ed., Introduction to algorithms, 2nd. ed., 10th pr. Cambridge, Mass.: MIT Press [u.a.], 2007.
  7. V. Kyrki, “JBIG image compression standard,” Apr. 1999.
  8. J. Alakuijala et al., “Benchmarking JPEG XL image compression,” in Optics, Photonics and Digital Technologies for Imaging Applications VI, P. Schelkens and T. Kozacki, Eds., Online Only, France: SPIE, Apr. 2020, p. 32. doi: 10.1117/12.2556264.
  9. Dr.W.X, WangXuan95/NBLI. (Oct. 07, 2024). C++. Accessed: Oct. 08, 2024. [Online]. Available: https://github.com/WangXuan95/NBLI
  10. E. Öztürk and A. Mesut, “Performance Evaluation of JPEG Standards, WebP and PNG in Terms of Compression Ratio and Time for Lossless Encoding,” in 2021 6th International Conference on Computer Science and Engineering (UBMK), Sep. 2021, pp. 15–20. doi: 10.1109/UBMK52708.2021.9558922.
  11. “Fractal image compression - ProQuest.” Accessed: Oct. 16, 2024. [Online]. Available: https://www.proquest.com/docview/215266230?sourcetype=Scholarly%20Journals
  12. “Real-Time H.265/HEVC Intra Encoding with a Configurable Architecture on FPGA Platform.” Accessed:   Oct.          16,                     2024.               [Online].                Available: https://cje.ejournal.org.cn/en/article/doi/10.1049/cje.2019.06.020
  13. “Standards – MPEG.” Accessed: Oct. 16, 2024. [Online]. Available: https://www.mpeg.org/standards/
  14. “RTP   Payload    Format   For    AV1.”   Accessed:   Oct.    16,   2024.   [Online].    Available:https://aomediacodec.github.io/av1-rtp-spec/#71-media-type-definition
  15. “SIPI Image Database.” Accessed: Oct. 09, 2024. [Online]. Available: https://sipi.usc.edu/database/
  16. Dr.W.X, WangXuan95/Image-Compression-Benchmark. (Oct. 16, 2024). Python. Accessed: Oct.17, 2024. [Online]. Available: https://github.com/WangXuan95/Image-Compression-Benchmark
  17. “JPEG - About JPEG.” Accessed: Oct. 16, 2024. [Online]. Available: https://jpeg.org/about.html
  18. “JPEG-LS-E | Lossless & Near-Lossless JPEG-LS Encoder IP Core,” CAST. Accessed: Oct. 17, 2024. [Online]. Available: https://www.cast-inc.com/compression/lossless-image-compression/jpeg-ls-e
  19. “JPEG-LS-D | Lossless & Near-Lossless JPEG-LS Decoder IP Core,” CAST. Accessed: Oct. 17, 2024. [Online]. Available: https://www.cast-inc.com/compression/lossless-image-compression/jpeg-ls-d
  20. W. Wei, J. Lei, and Y. Li, “Onboard optimized hardware implementation of JPEG-LS encoder based on FPGA,” in Satellite Data Compression, Communications, and Processing VIII, SPIE, Oct. 2012, pp. 49–58. doi: 10.1117/12.930869.
  21. S.-L. Chen, T.-Y. Liu, C.-W. Shen, and M.-C. Tuan, “VLSI Implementation of a Cost-Efficient Near-Lossless CFA Image Compressor for Wireless Capsule Endoscopy,” IEEE Access, vol. 4, pp. 10235– 10245, 2016, doi: 10.1109/ACCESS.2016.2638475.
  22. H. Daryanavard, O. Abbasi, and R. Talebi, “FPGA implementation of JPEG-LS compression algorithm for real time applications,” in 2011 19th Iranian Conference on Electrical Engineering, May 2011, pp. 1–4. Accessed: Oct. 17, 2024. [Online]. Available: https://ieeexplore.ieee.org/document/5955727
  23. N. Asuni and A. Giachetti, “TESTIMAGES: a Large-scale Archive for Testing Visual Devices and Basic Image Processing Algorithms,” 2014, The Eurographics Association. doi: 10.2312/STAG.20141242.
  24. Dr.W.X, WangXuan95/FPGA-JPEG-LS-encoder. (Oct. 17, 2024). Verilog. Accessed: Oct. 17, 2024. [Online]. Available: https://github.com/WangXuan95/FPGA-JPEG-LS-encoder