ФІЗИКО-ХІМІЧНІ ДОСЛІДЖЕННЯ СТРУКТУРИ ГУМІНОВИХ КИСЛОТ

1
Національний університет «Львівська політехніка»
2
Відділення фізико-хімії горючих копалин ІнФОВ ім. Л. М. Литвиненка НАН України
3
Інституту фізико-органічної хімії і вуглехімії ім. Л. М. Литвиненка НАН України
4
Національний університет “Львівська політехніка”

На основі комплексного термічного, титриметричного та УФ/Віз-спектрального аналізів досліджено структуру та визначено вміст функціональних груп у молекулах гумінових кислот, одержаних із різної сировини – копроліту, торфу та леонардиту. Термічну стійкість речовин досліджували в повітряному середовищі в інтервалі температур 20-1000°С. Виявлено, що  в гумінових кислотах, одержаних із різної сировини,  вміст аліфатичної складової є переважаючим. Зразок гумінової кислоти, отриманий із копроліту, відзначається найбільшим вмістом аліфатичних фрагментів та підвищеним вмістом кислотних груп.

1. RomenskyiV. Yu. (2011). Vplyv zroshennia I mineralnoho udobrennia na riven rodiuchosti gruntu pryvyroshchuvanipolovykh kultur v umovakh pivdennoho Stepu Ukrainy. Biul. In-tu silsk. hosp-va stepovoi zony, 1, 140-144.(inUkrainian).
2. Piccolo A. (2002). The Supramolecular structure of humic substances. A novel understanding of humus chemistry and implications in soil science. Advances in Agronomy, 75, 57-134.
https://doi.org/10.1016/S0065-2113(02)75003-7
3. Horovaia A.Y., Orlov D.S., Shcherbenko O.V. (1995). Humynovue veshchestva. Stroenye, funktsyy, mekhanizm deistvyia, protektorne svoistva, ekolohycheskaia rol. Kyev: Naukova Dumka. (inUkrainian).
4. Bozkurt S., Lucisano M., Moreno L., Neretnieks I. (2001). Peat as a potential analogue for the long-term evolution in landfills. Earth-ScienceReviews, 53,95-147.
https://doi.org/10.1016/S0012-8252(00)00036-2
5. Tytov Y.N. (2009). Patent RF. 2009126851. Moskva: Reestr patentov na yzobretenyia Rossyiskoi Federatsyy.[in Russian].
6. Luchnyk N.A., Ivanov A.E., Merkulov A.I. (1997). Humaty natriiu na posivakh zernovykh kultur. Khymyia v selskom khoziaistve, 2, 28-30. (inUkrainian).
7. Butaev B.S., Zoltoev E.V., Bodoev N.V., Bukov Y.P., Dashytsurenova A.D. Otsenka fyzyolohycheskoi aktyvnosty humynovukh veshchestv okyslennukh uhlei. Khymyia v ynteresakh ustoichyvoho razvytyia, 13(4), 501-50. [in Russian].
8. S.M. Harmash. (2009). Vplyv naturalnoho stymuliatora roslyn biohumatu na vrozhainist ovochevykh kultur. Visnyk Dnipropetrovskoho derzhavnoho ahrarnoho universytetu, 1, 47-50. (inUkrainian).
9. Chukhareva N.V., Shyshmyna L.V., Novykov A.A. (2003). Vlyianye termoobrabotky torfa na sostav y svoistva humynovukh kyslot. Khymyia tverdoho toplyva, 4, 38-44. [in Russian].
https://doi.org/10.2753/RSS1061-1428440438
10. Helen Lavrenyuk, Victoria Kochubei, Oleg Mykhalichko, BorysMykhalichko. (2018). Metal - coordinated epoxy polymers with suppressed combustibility. Preparation technology, thermal degradation, and combustibility test of new epoxy - amine polymers containing the curing agent with chelated copper(II) carbonate. Fire and Materials, 42(3),  266 - 277.
https://doi.org/10.1002/fam.2489
11. Eshwar M., Srilatha M., Bhanu Rekha K., Harish Kumar Sharma S. (2017). Characterization of Humic Substances by Functional Groups and Spectroscopic Methods. International Jornal Current Microbiology Applied Sciences, 6(10), 1768-1774.
https://doi.org/10.20546/ijcmas.2017.610.213
12. SouzaF., BragançaS.R. (2018)Extraction and characterization of humic acid from coal for the application as dispersant of ceramic powders. Journal of Materials Research and Technology, 7(3), 254-260.
https://doi.org/10.1016/j.jmrt.2017.08.008
13. HaddadG., AliF.E., MouneimneA.H. (2015). Humicmatterofcompost: determination of humic spectroscopic ratio  (E4/E6). Current Science International,4(1), 56-72.
14. PermynovaY. V. (2020). Analyz, klassyfykatsyiayprohnozsvoistvhumynovukhkyslot [Analysis, classification and prediction of humic acid properties] (Doctor's thesis). Moskva. [in Russian].