ДОСЛІДЖЕННЯ ВПЛИВУ ПАРАМЕТРІВ СИНТЕЗУ НА МАГНІТНІ ВЛАСТИВОСТІ CoNi ФЕРИТІВ

1
Державний вищий навчальний заклад “Український державний хіміко-технологічний університет”
2
Державний вищий навчальний заклад “Український державний хіміко-технологічний університет”

У  статті  досліджено  вплив  умов  проведення  синтезу  на  намагніченість  насичення  та коерцитивну  силу NiCo  феритів,  які  були  отримані  під  дією  низькотемпературної контактної нерівноважної плазми (КНП). Основними впливовими факторами є початковий рН розчину, температура обробки та тривалість плазмової обробки. Математичні рівняння адекватно  описують  отримані  залежності.  Результати  показали,  що  рН  реакційного середовища  є  параметром,  який  найбільше  впливає  на  магнітний  гістерезис  для  зразків, отриманих при обробці КНП. Зі збільшенням початкового рН  значення коерцитивної сили збільшуються. 

  1. Cruz, I. F., Freire, C., Araújo, J. P., Pereira, C., & Pereira, A. M. (2018). Multifunctional ferrite nanoparticles: from current trends toward the future. In Magnetic Nanostructured Materials, pp. 59-116. https://doi.org/10.1016/B978-0-12-813904-2.00003-6
  2. Tang, I. M., Krishnamra, N., Charoenphandhu, N., Hoonsawat, R., & Pon-On, W. (2011). Biomagnetic of apatite-coated cobalt ferrite: a core–shell particle for protein adsorption and pH-controlled release. Nanoscale Res Lett6(1), 19. https://link.springer.com/content/pdf/10.1007/s11671-010-9761-4.pdf
  3. Mariosi, F. R., Venturini, J., da Cas Viegas, A., & Bergmann, C. P. (2020). Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceramics International46(3), 2772-2779. https://doi.org/10.1016/j.ceramint.2019.09.266
  4. Gorter, E. W. (1950). Magnetization in ferrites: saturation magnetization of ferrites with spinel structure. Nature165(4203), 798-800.
  5. Yáñez-Vilar, S., Sánchez-Andújar, M., Gómez-Aguirre, C., Mira, J., Señarís-Rodríguez, M. A., & Castro-García, S. (2009). A simple solvothermal synthesis of MFe2O4 (M= Mn, Co and Ni) nanoparticles. Journal of Solid State Chemistry182(10), 2685-2690.

https://doi.org/10.1016/j.jssc.2009.07.028

  1. Venturini, J., Wermuth, T. B., Machado, M. C., Arcaro, S., Alves, A. K., da Cas Viegas, A., & Bergmann, C. P. (2019). The influence of solvent composition in the sol-gel synthesis of cobalt ferrite (CoFe2O4): A route to tuning its magnetic and mechanical properties. Journal of the European Ceramic Society39(12), 3442-3449.

https://doi.org/10.1016/j.jeurceramsoc.2019.01.030

  1. Gharibshahian, M., Mirzaee, O., & Nourbakhsh, M. S. (2017). Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified Pechini method. Journal of Magnetism and Magnetic Materials425, 48-56.

https://doi.org/10.1016/j.jmmm.2016.10.116

  1. Cernea, M., Galizia, P., Ciuchi, I., Aldica, G., Mihalache, V., Diamandescu, L., & Galassi, C. (2016). CoFe2O4 magnetic ceramic derived from gel and densified by spark plasma sintering. Journal of Alloys and Compounds656, 854-862.

https://doi.org/10.1016/j.jallcom.2015.09.271

  1. X. H. Li, C. L. Xu, X. H. Han, L. Qiao, T. Wang, F. S Li, “Synthesis and magnetic properties of nearly monodisperse CoFe2O4 nanoparticles through a simple hydrothermal condition”, Nanoscale Research Letters, vol. 5, no. 6, p. 1039, 2010.
  2. Hashemi, S. M., Hasani, S., Ardakani, K. J., & Davar, F. (2019). The effect of simultaneous addition of ethylene glycol and agarose on the structural and magnetic properties of CoFe2O4 nanoparticles prepared by the sol-gel auto-combustion method. Journal of Magnetism and Magnetic Materials492, 165714.

https://doi.org/10.1016/j.jmmm.2019.165714

  1. Li, X., Sun, Y., Zong, Y., Wei, Y., Liu, X., Li, X., ... & Zheng, X. (2020). Size-effect induced cation redistribution on the magnetic properties of well-dispersed CoFe2O4 nanocrystals. Journal of Alloys and Compounds, 155710.

https://doi.org/10.1016/j.jallcom.2020.155710

  1. Revathi, J., Abel, M. J., Archana, V., Sumithra, T., & Thiruneelakandan, R. (2020). Synthesis and characterization of CoFe2O4 and Ni-doped CoFe2O4 nanoparticles by chemical Co-precipitation technique for photo-degradation of organic dyestuffs under direct sunlight. Physica B: Condensed Matter, 412136.

https://doi.org/10.1016/j.physb.2020.412136

  1. Brachwitz, K., Böntgen, T., Lorenz, M., & Grundmann, M. (2013). On the transition point of thermally activated conduction of spinel-type MFe2O4 ferrite thin films (M= Zn, Co, Ni). Applied Physics Letters102(17), 172104.K.

 https://doi.org/10.1063/1.4803475

  1.  Frolova, L., Pivovarov, A., & Tsepich, E. (2016). Non-equilibrium plasma-assisted hydrophase ferritization in Fе2+–Ni2+–SO42−–OH− System. In Nanophysics, Nanophotonics, Surface Studies, and Applications (pp. 213-220). Springer, Cham.

https://doi.org/10.1007/978-3-319-30737-4_18

  1. Сергеева, О. В., & Пивоваров, А. А. (2015). Factors affecting the character of plasma discharge with electrolytic cathode at a fixed pressure. Eastern-European Journal of Enterprise Technologies3(6 (75)), 31-35.

https://doi.org/10.15587/1729-4061.2015.44243

  1. Frolova, L. A., & Derimova, A. V. (2019). Factors controlling magnetic properties of CoFe2O4 nanoparticles prepared by contact low-temperature non-equilibrium plasma method. Journal of Chemical Technology and Metallurgy54(5), 1040-1046.

https://dl.uctm.edu/journal/node/j2019-5/21_18-174_p1040-1046.pdf