У статті досліджено вплив умов проведення синтезу на намагніченість насичення та коерцитивну силу NiCo феритів, які були отримані під дією низькотемпературної контактної нерівноважної плазми (КНП). Основними впливовими факторами є початковий рН розчину, температура обробки та тривалість плазмової обробки. Математичні рівняння адекватно описують отримані залежності. Результати показали, що рН реакційного середовища є параметром, який найбільше впливає на магнітний гістерезис для зразків, отриманих при обробці КНП. Зі збільшенням початкового рН значення коерцитивної сили збільшуються.
- Cruz, I. F., Freire, C., Araújo, J. P., Pereira, C., & Pereira, A. M. (2018). Multifunctional ferrite nanoparticles: from current trends toward the future. In Magnetic Nanostructured Materials, pp. 59-116. https://doi.org/10.1016/B978-0-12-813904-2.00003-6
- Tang, I. M., Krishnamra, N., Charoenphandhu, N., Hoonsawat, R., & Pon-On, W. (2011). Biomagnetic of apatite-coated cobalt ferrite: a core–shell particle for protein adsorption and pH-controlled release. Nanoscale Res Lett, 6(1), 19. https://link.springer.com/content/pdf/10.1007/s11671-010-9761-4.pdf
- Mariosi, F. R., Venturini, J., da Cas Viegas, A., & Bergmann, C. P. (2020). Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceramics International, 46(3), 2772-2779. https://doi.org/10.1016/j.ceramint.2019.09.266
- Gorter, E. W. (1950). Magnetization in ferrites: saturation magnetization of ferrites with spinel structure. Nature, 165(4203), 798-800.
- Yáñez-Vilar, S., Sánchez-Andújar, M., Gómez-Aguirre, C., Mira, J., Señarís-Rodríguez, M. A., & Castro-García, S. (2009). A simple solvothermal synthesis of MFe2O4 (M= Mn, Co and Ni) nanoparticles. Journal of Solid State Chemistry, 182(10), 2685-2690.
https://doi.org/10.1016/j.jssc.2009.07.028
- Venturini, J., Wermuth, T. B., Machado, M. C., Arcaro, S., Alves, A. K., da Cas Viegas, A., & Bergmann, C. P. (2019). The influence of solvent composition in the sol-gel synthesis of cobalt ferrite (CoFe2O4): A route to tuning its magnetic and mechanical properties. Journal of the European Ceramic Society, 39(12), 3442-3449.
https://doi.org/10.1016/j.jeurceramsoc.2019.01.030
- Gharibshahian, M., Mirzaee, O., & Nourbakhsh, M. S. (2017). Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified Pechini method. Journal of Magnetism and Magnetic Materials, 425, 48-56.
https://doi.org/10.1016/j.jmmm.2016.10.116
- Cernea, M., Galizia, P., Ciuchi, I., Aldica, G., Mihalache, V., Diamandescu, L., & Galassi, C. (2016). CoFe2O4 magnetic ceramic derived from gel and densified by spark plasma sintering. Journal of Alloys and Compounds, 656, 854-862.
https://doi.org/10.1016/j.jallcom.2015.09.271
- X. H. Li, C. L. Xu, X. H. Han, L. Qiao, T. Wang, F. S Li, “Synthesis and magnetic properties of nearly monodisperse CoFe2O4 nanoparticles through a simple hydrothermal condition”, Nanoscale Research Letters, vol. 5, no. 6, p. 1039, 2010.
- Hashemi, S. M., Hasani, S., Ardakani, K. J., & Davar, F. (2019). The effect of simultaneous addition of ethylene glycol and agarose on the structural and magnetic properties of CoFe2O4 nanoparticles prepared by the sol-gel auto-combustion method. Journal of Magnetism and Magnetic Materials, 492, 165714.
https://doi.org/10.1016/j.jmmm.2019.165714
- Li, X., Sun, Y., Zong, Y., Wei, Y., Liu, X., Li, X., ... & Zheng, X. (2020). Size-effect induced cation redistribution on the magnetic properties of well-dispersed CoFe2O4 nanocrystals. Journal of Alloys and Compounds, 155710.
https://doi.org/10.1016/j.jallcom.2020.155710
- Revathi, J., Abel, M. J., Archana, V., Sumithra, T., & Thiruneelakandan, R. (2020). Synthesis and characterization of CoFe2O4 and Ni-doped CoFe2O4 nanoparticles by chemical Co-precipitation technique for photo-degradation of organic dyestuffs under direct sunlight. Physica B: Condensed Matter, 412136.
https://doi.org/10.1016/j.physb.2020.412136
- Brachwitz, K., Böntgen, T., Lorenz, M., & Grundmann, M. (2013). On the transition point of thermally activated conduction of spinel-type MFe2O4 ferrite thin films (M= Zn, Co, Ni). Applied Physics Letters, 102(17), 172104.K.
https://doi.org/10.1063/1.4803475
- Frolova, L., Pivovarov, A., & Tsepich, E. (2016). Non-equilibrium plasma-assisted hydrophase ferritization in Fе2+–Ni2+–SO42−–OH− System. In Nanophysics, Nanophotonics, Surface Studies, and Applications (pp. 213-220). Springer, Cham.
https://doi.org/10.1007/978-3-319-30737-4_18
- Сергеева, О. В., & Пивоваров, А. А. (2015). Factors affecting the character of plasma discharge with electrolytic cathode at a fixed pressure. Eastern-European Journal of Enterprise Technologies, 3(6 (75)), 31-35.
https://doi.org/10.15587/1729-4061.2015.44243
- Frolova, L. A., & Derimova, A. V. (2019). Factors controlling magnetic properties of CoFe2O4 nanoparticles prepared by contact low-temperature non-equilibrium plasma method. Journal of Chemical Technology and Metallurgy, 54(5), 1040-1046.
https://dl.uctm.edu/journal/node/j2019-5/21_18-174_p1040-1046.pdf