STUDYING THE INFLUENCE OF SYNTHESIS PARAMETERS ON THE MAGNETIC PROPERTIES OF CoNi FERRITES

2020;
: 33-38
1
Ukrainian State University of Chemical Technology
2
Ukrainian State University of Chemical Technology

The influence of synthesis conditions on saturation magnetization and coercive force of NiCo ferrites, which were obtained under the action of low-temperature contact nonequilibrium plasma (CNP), is investigated. The main influencing factors were the initial pH of the solution, the treatment temperature and the duration of plasma treatment. Mathematical equations adequately describe the obtained dependences. The results showed that the pH of the reaction medium is the parameter that most affects the magnetic hysteresis for samples obtained by processing CNP. Increasing the initial pH leads to an increase in coercive force.

1. Cruz, I. F., Freire, C., Araújo, J. P., Pereira, C., & Pereira, A. M. (2018). Multifunctional ferrite nanoparticles: from current trends toward the future. In Magnetic Nanostructured Materials, pp. 59-116. https://doi.org/10.1016/B978-0-12-813904-2.00003-6
https://doi.org/10.1016/B978-0-12-813904-2.00003-6
2. Tang, I. M., Krishnamra, N., Charoenphandhu, N., Hoonsawat, R., & Pon-On, W. (2011). Biomagnetic of apatite-coated cobalt ferrite: a core-shell particle for protein adsorption and pH-controlled release. Nanoscale Res Lett, 6(1), 19. https://link.springer.com/content/pdf/10.1007/s11671-010-9761-4.pdf
https://doi.org/10.1007/s11671-010-9761-4
3. Mariosi, F. R., Venturini, J., da Cas Viegas, A., & Bergmann, C. P. (2020). Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceramics International, 46(3), 2772-2779. https://doi.org/10.1016/j.ceramint.2019.09.266
https://doi.org/10.1016/j.ceramint.2019.09.266
4. Gorter, E. W. (1950). Magnetization in ferrites: saturation magnetization of ferrites with spinel structure. Nature, 165(4203), 798-800.
https://doi.org/10.1038/165798a0
5. Yáñez-Vilar, S., Sánchez-Andújar, M., Gómez-Aguirre, C., Mira, J., Señarís-Rodríguez, M. A., & Castro-García, S. (2009). A simple solvothermal synthesis of MFe2O4 (M= Mn, Co and Ni) nanoparticles. Journal of Solid State Chemistry, 182(10), 2685-2690.https://doi.org/10.1016/j.jssc.2009.07.028
https://doi.org/10.1016/j.jssc.2009.07.028
6. Venturini, J., Wermuth, T. B., Machado, M. C., Arcaro, S., Alves, A. K., da Cas Viegas, A., & Bergmann, C. P. (2019). The influence of solvent composition in the sol-gel synthesis of cobalt ferrite (CoFe2O4): A route to tuning its magnetic and mechanical properties. Journal of the European Ceramic Society, 39(12), 3442-3449. https://doi.org/10.1016/j.jeurceramsoc.2019.01.030
https://doi.org/10.1016/j.jeurceramsoc.2019.01.030
7. Gharibshahian, M., Mirzaee, O., & Nourbakhsh, M. S. (2017). Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified Pechini method. Journal of Magnetism and Magnetic Materials, 425, 48-56. https://doi.org/10.1016/j.jmmm.2016.10.116
https://doi.org/10.1016/j.jmmm.2016.10.116
8. Cernea, M., Galizia, P., Ciuchi, I., Aldica, G., Mihalache, V., Diamandescu, L., & Galassi, C. (2016). CoFe2O4 magnetic ceramic derived from gel and densified by spark plasma sintering. Journal of Alloys and Compounds, 656, 854-862. https://doi.org/10.1016/j.jallcom.2015.09.271
https://doi.org/10.1016/j.jallcom.2015.09.271
9. X. H. Li, C. L. Xu, X. H. Han, L. Qiao, T. Wang, F. S Li, "Synthesis and magnetic properties of nearly monodisperse CoFe2O4 nanoparticles through a simple hydrothermal condition", Nanoscale Research Letters, vol. 5, no. 6, p. 1039, 2010.
https://doi.org/10.1007/s11671-010-9599-9
10. Hashemi, S. M., Hasani, S., Ardakani, K. J., & Davar, F. (2019). The effect of simultaneous addition of ethylene glycol and agarose on the structural and magnetic properties of CoFe2O4 nanoparticles prepared by the sol-gel auto-combustion method. Journal of Magnetism and Magnetic Materials, 492, 165714. https://doi.org/10.1016/j.jmmm.2019.165714
https://doi.org/10.1016/j.jmmm.2019.165714
11. Li, X., Sun, Y., Zong, Y., Wei, Y., Liu, X., Li, X., ... & Zheng, X. (2020). Size-effect induced cation redistribution on the magnetic properties of well-dispersed CoFe2O4 nanocrystals. Journal of Alloys and Compounds, 155710. https://doi.org/10.1016/j.jallcom.2020.155710
https://doi.org/10.1016/j.jallcom.2020.155710
12. Revathi, J., Abel, M. J., Archana, V., Sumithra, T., & Thiruneelakandan, R. (2020). Synthesis and characterization of CoFe2O4 and Ni-doped CoFe2O4 nanoparticles by chemical Co-precipitation technique for photo-degradation of organic dyestuffs under direct sunlight. Physica B: Condensed Matter, 412136. https://doi.org/10.1016/j.physb.2020.412136
https://doi.org/10.1016/j.physb.2020.412136
13. Brachwitz, K., Böntgen, T., Lorenz, M., & Grundmann, M. (2013). On the transition point of thermally activated conduction of spinel-type MFe2O4 ferrite thin films (M= Zn, Co, Ni). Applied Physics Letters, 102(17), 172104.K. https://doi.org/10.1063/1.4803475
https://doi.org/10.1063/1.4803475
14.  Frolova, L., Pivovarov, A., & Tsepich, E. (2016). Non-equilibrium plasma-assisted hydrophase ferritization in Fе2+-Ni2+-SO42−-OH− System. In Nanophysics, Nanophotonics, Surface Studies, and Applications (pp. 213-220). Springer, Cham.https://doi.org/10.1007/978-3-319-30737-4_18
https://doi.org/10.1007/978-3-319-30737-4_18
15. Сергеева, О. В., & Пивоваров, А. А. (2015). Factors affecting the character of plasma discharge with electrolytic cathode at a fixed pressure. Eastern-European Journal of Enterprise Technologies, 3(6 (75)), 31-35.https://doi.org/10.15587/1729-4061.2015.44243
https://doi.org/10.15587/1729-4061.2015.44243
16. Frolova, L. A., & Derimova, A. V. (2019). Factors controlling magnetic properties of CoFe2O4 nanoparticles prepared by contact low-temperature non-equilibrium plasma method. Journal of Chemical Technology and Metallurgy, 54(5), 1040-1046.https://dl.uctm.edu/journal/node/j2019-5/21_18-174_p1040-1046.pdf