ФОРМУВАННЯ ТА ВЛАСТИВОСТІ СТРУКТУРОВАНИХ ПОЛІМЕРНИХ ПЛІВОК НА ОСНОВІ БІОСУМІСНИХ ПОЛІМЕРІВ

1
Національний університет “Львівська політехніка”
2
Національний університет “Львівська політехніка”
3
Національний університет “Львівська політехніка”
4
Національний університет “Львівська політехніка”

Структуровані полімерні плівки на основі полівінілового спирту та поліакриламіду отримані за допомогою радикального структурування, ініційованого пероксидовмісними реакційноздатними кополімерами. Досліджено вплив температури, природи і концентрації зшивальних агентів на величину гель-фракції та властивості отриманих плівок. Отримані структуровані нанокомпозитні плівки характеризуються покращеними фізико-механічними властивостями, що залежать від вмісту пероксидвмісного кополімеру та присутності додаткового зшиваючого агента.

1. Stridsberg K. M., Ryner M. Albertsson A. C. (2002) Controlled ring-opening polymerization: Polymers with designed macromolecular architecture // Advanced Polymer Science, 157, 41-65.
https://doi.org/10.1007/3-540-45734-8_2
2. Kricheldorf H. R. (2004). Biodegradable polymers with variable architectures via ring-expansion polymerization. Journal of Polymer Science, Part A, 42, 4723-4742.
https://doi.org/10.1002/pola.20261
3. Wee Y. J., Kim J. N., Ryu H. W. (2006) Biotechnological production of lactic acid and its recent applications // Food Technology and Biotechnology, 44, 163-172.
4. Kim M. J., Koh Y. H. (2013) Synthesis of aligned porous poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) composite microspheres. Material Science and Engineering: C, 33(4), 2266-2272.
https://doi.org/10.1016/j.msec.2013.01.051
5. Jin С., Liang B., Li J., Li F. (2013) Biodegradation behaviors of poly(p-dioxanone) in different environment media // Journal of Polymers and the Environment, 21, 1088-1099.
https://doi.org/10.1007/s10924-013-0613-z
6. Siracusa V., Lotti N., Munari A., Dalla Rosa, M. (2015) Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: Gas barrier properties after stressed treatments. Polymer Degradation and Stability, 119, 35-45.
https://doi.org/10.1016/j.polymdegradstab.2015.04.026
7. Zhang N., Pompe T., Amin I., Luxenhofer R., Werner C., Jordan R. (2012) Tailored poly(2-oxazoline) polymer brushes to control protein adsorption and cell adhesion. Macromolecular bioscience, 12(7), 926-936.
https://doi.org/10.1002/mabi.201200026
8. Singh G., Kumari A., Mittal A., Yadav A. (2013) Poly β-hydroxybutyrate production by Bacillus subtilis NG220 using sugar industry waste water. BioMed research international, 2013. Article ID 952641. 10 p.
https://doi.org/10.1155/2013/952641
9. Shen X., Shamshina J. L., Berton P., Gurau G., Rogers R. D.  (2016)  Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chemistry, 18. P. 53-75.
https://doi.org/10.1039/C5GC02396C
10. Gupta P., Nayak K. K. (2015) Characteristics of protein-based biopolymer and its application. Polymer Engineering Science, 55, 485-498.
https://doi.org/10.1002/pen.23928
11. George K. A., Chirila T. V., Wentrup-Byrne E. (2012) Effects of crosslink density on hydrolytic degradation of poly(L-lactide)-based networks. Polymer Degradation and Stability, 97(6), 964-971. doi: 10.1016/j.polymdegradstab.2012.03.017
https://doi.org/10.1016/j.polymdegradstab.2012.03.017
12. Mitra T., Sailakshmi G., Gnanamani, A., Mandal A. B. (2013) Studies on cross-linking of succinic acid with chitosan/collagen. Materials Research, 16(4), 755-765. doi: 10.1590/S1516-14392013005000059.
https://doi.org/10.1590/S1516-14392013005000059
13. Kuckling D., Doering A., Krahl F., Arndt K.-F. (2012) Stimuli-Responsive Polymer Systems. In: K. Matyjaszewski, M. Möller (Eds) Polymer Science: A Comprehensive Reference (pp. 377-413). Elsevier B.V.: Amsterdam
https://doi.org/10.1016/B978-0-444-53349-4.00214-4
14. Thakur G., Rodrigues F. C., Singh K. (2018) Crosslinking biopolymers for advanced drug delivery and tissue engineering applications. In: Chun H. J., Park C. H., Kwon I. K., Khang G. (Eds) Cutting-Edge Enabling Technologies for Regenerative Medicine (pp. 213-231). Springer: Singapour.
https://doi.org/10.1007/978-981-13-0950-2_11
15. Jiang Q. Reddy N., Zhang S. (2013) Water stable electrospun collagen fibers from a non-toxic solvent and crosslinking system // J. Biomedical Materials Research Part A, 101A, 1237-1247.
https://doi.org/10.1002/jbm.a.34422
16. Bajpai S. K., Saxena S. K., Sharma S. (2006) Swelling behavior of barium ions crosslinked bipolymeric sodium alginate-carboxymethyl guargum blend beads. Reactive Functional Polymers, 66, 659-666.
https://doi.org/10.1016/j.reactfunctpolym.2005.10.019
17. Borova S., Tokarev V., Stahlhut P., Luxenhofer R. (2020) Crosslinking of hydrophilic polymers using polyperoxides. Colloid and Polymer Science, 298, 1699-1713.
https://doi.org/10.1007/s00396-020-04738-w
18. Shevchuk O. M., Bukartyk N. M., Chobit M. R., Nadashkevych Z. Ya., Tokarev V. S. (2018) The peculiarities of formation of cross-linked poly(2-ethyl-2-oxazoline) films and nanocomposites on their base. Chemistry, Technology and Application of Substances, 3(2), 180-186.
https://doi.org/10.23939/ctas2020.02.180
19. Tokarev V., Shevchuk О., Ilchuk H., Tokarev S., Kusnezh V., Korbutyak D., Kalytchuk S., Bukartyk N. (2015) Thin polymer films with embedded CdS nanocrystals // Colloid and Polymer Science, 293, (1159-1169).
https://doi.org/10.1007/s00396-015-3500-4
20. Serdiuk V. O., Shevchuk O. M., Pereviznyk O. B., Bukartyk N. M., Tokarev V. S. (2018) Reactive peroxide macroinitiator for cross-linking biocompatible polymers. Bulletin of Lviv Polytechnic National University, 886, 226-235.
21. Vasilyev V. P., Glus L. S., Gubar S. P. (1985) Elaboration of gas-chromatography method of peroxide monomer analysis. Bulletin of Lviv Polytechnic Institute, 191, 24-26.
22. Toropceva A. M., Belogorodskaya K. V., Bondarenko V. M. (1972)  Laboratory Training on Chemistry and Technology of High Molecular Substances. Leningrad, USSR: Khimiya.
23. Katime I., Mendizabal E. (2010) Swelling properties of new hydrogels based on the dimethyl amino ethyl acrylate methyl chloride quaternary salt with acrylic acid and 2-methylene butane-1,4-dioic acid monomers in aqueous solutions. Material Science & Application, 1, 162-167.
https://doi.org/10.4236/msa.2010.13026
24. Ramsden D. K., Kay K. Mc. (1986) Degradation of polyacrylamide in aqueous solution induced by chemically generated hydroxyl radicals: Part I - Fenton's reagent // Polymer Degradation and Stability, 14(3), 217-229.
https://doi.org/10.1016/0141-3910(86)90045-5
25. Guezennec A.-G., Michel C., Bru K., Touze S., Desroche N., Mnif I., Motelica-Heino M. (2015) Transfer and degradation of polyacrylamide based flocculants in hydrosystems: a review. Environmental Science and Pollution Research, 22(9), 6390-6406.
https://doi.org/10.1007/s11356-014-3556-6
26. Ahmed E. M. (2015) Hydrogel: Preparation, characterization, and applications. Journal of Advanced Research, 6, 105-121.
https://doi.org/10.1016/j.jare.2013.07.006