THE INVESTIGATION OF THE POROUS STRUCTURE OF CARBON SORBENTS BASED ON β-CYCLODEXTRIN FOR USE IN ENVIRONMENTAL PROTECTION TECHNOLOGIES

EP.
2023;
: сс.108-116
1
Czestochowa University of Technology, Department of Electrical Power Engineering
2
Lviv Polytechnic National University
3
Czestochowa University of Technology, Department of Electrical Power Engineering

In this paper, the porous structure of three types of β-cyclodextrin (β-CD) carbons was synthesized and investigated. The first carbon was obtained from pure β-CD, the second carbon was synthesized from β-CD using the KOH activator, and the third carbon was synthesized from pure β-CD with additional ultrasonic treatment in the non-cavitation mode at the last stage. It was found that the carbon from pure β-CD has a micromesoporous structure with a small specific surface area (~35 m2/g). Activation with KOH causes a significant increase in the specific surface area (~654 m2/g) due to an increase in the content of micropores with an average size of 1,25 nm. The ultrasonic treatment causes mechanical grinding and oxidation of the carbon surface. It has been shown that such treatment increases the mesopore content and significantly changes the mesopore size distribution. It has been established that the oxidation of the β-CD carbon surface after ultrasonic treatment causes an increase in its hydrophilicity of up to 83,1%. The increase in hydrophilicity will allow more efficient use of synthesized carbon and composites based on it in solving the problems of environmental safety in water environments.

 

1. Almeida, L., Felzenszwalb, I., Marques, M., & Cruz, C. (2020). Nanotechnology activities: Environmental Protection Regulatory Issues Data. Heliyon, 6(10). doi:  https://doi.org/10.1016/j.heliyon.2020.e05303

https://doi.org/10.1016/j.heliyon.2020.e05303

2. Ariga, K. (2021). Nanoarchitectonics can save our planet: Nanoarchitectonics for energy and environment. Journal of Inorganic and Organometallic Polymers and Materials, 31(6), 2243–2244. doi: https://doi.org/10.1007/s10904-021-02002-4

https://doi.org/10.1007/s10904-021-02002-4

3. Ariga, K., Jackman, J. A., Cho, N. J., Hsu, S., Shrestha, L. K., Mori, T., & Takeya, J. (2018). Nanoarchitectonic‐based material platforms for environmental and bioprocessing applications. The Chemical Record, 19(9), 1891–1912. doi: https://doi.org/10.1002/tcr.201800103

https://doi.org/10.1002/tcr.201800103

4. Ariga, K., Li, M., Richards, G. J., & Hill, J. P. (2011). Nanoarchitectonics: A conceptual paradigm for design and synthesis of dimension-controlled functional nanomaterials. Journal of Nanoscience and Nanotechnology, 11(1), 1–13. doi:  https://doi.org/10.1166/jnn.2011.3839

https://doi.org/10.1166/jnn.2011.3839

5. Balaban, O. V., Venhryn, B. Ya., Grygorchak, I. I., Mudry, S. I., Kulyk, Yu. O., Rachiy, B. I., & Lisovskiy, R. P. (2014) Size Effects at Ultrasonic Treatment of Nanoporous Carbon and Improved characteristics of Supercapacitors on Its Base. Nanosystems, Nanomaterials, Nanotechnologies, 12(2), 225–238.

6. Baranov, A. P., Shtejnberg, G. V., & Bagockij, V. S. (1971) Issledovanie gidrofobizirovannogo aktivnogo sloja gazodiffuzionnogo jelektroda. Elektrohimija, 7(3), 387–390.

7. Birkett, G. R., & Do, D. D. (2006). The adsorption of water in finite carbon pores. Molecular Physics, 104(4), 623–637. doi: https://doi.org/10.1080/00268970500500583

https://doi.org/10.1080/00268970500500583

8. Bordun, І. M., Korec'kij, R. M., Ptashnyk, V. V., & Sadova, M. M. (2014) Zmіna granulometrichnogo skladu ta gіdrofіl'nostі aktivovanogo vugіllja pіslja UZ opromіnennja u dokavіtacіjnomu rezhimі. Fіzichna іnzhenerіja poverhnі, 12(2), 246–252.

9. Bruns, C. J. (2019). Exploring and exploiting the symmetry-breaking effect of cyclodextrins in mechanomolecules. Symmetry, 11(10), 1249. doi: https://doi.org/10.3390/sym11101249

https://doi.org/10.3390/sym11101249

10. Chabecki, P. (2022). Quantum energy storage in dielectric porous clathrates. Energies, 15(16), 6069. https://doi.org/10.3390/en15166069

https://doi.org/10.3390/en15166069

11. Chen, G., & Jiang, M. (2011). Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chemical Society Reviews, 40(5), 2254. doi: https://doi.org/10.1039/c0cs00153h

https://doi.org/10.1039/c0cs00153h

12. Goncharuk, V. V., Malyarenko, V. V., & Yaremenko, V. A. (2004). O mehanizme vozdejstvija ul'trazvuka na vodnye sistemy. Himija i tehnologija vody, 26(3), 275–284. 

13. Grygorchak, I., Shvets, R., Kityk, I. V., Kityk, A. V., Wielgosz, R., Hryhorchak, O., & Shchur, I. (2019). Photosensitive carbon supercapacitor: Cavitated nanoporous carbon from iodine doped β–cyclodextryn. Physica E: Low-Dimensional Systems and Nanostructures, 108, 164–168. doi: https://doi.org/10.1016/j.physe.2018.12.009

https://doi.org/10.1016/j.physe.2018.12.009

14. Grygorchak, I., Borysyuk, A., Shvets, R., Matulka, D., & Hryhorchak, O. (2018) Supramolecular design of carbons for energy storage with the Reactanse-sensor functional hybridity. East European Journal of Physics, 4, 48-57. doi: https://doi.org/10.26565/2312-4334-2018-4-06 [in Ukrainian]

https://doi.org/10.26565/2312-4334-2018-4-06

15. Gu, W., & Yushin, G. (2013). Review of nanostructured carbon materials for electrochemical capacitor applications: Advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Wiley Interdisciplinary Reviews: Energy and Environment, 3(5), 424–473. doi: https://doi.org/10.1002/wene.102

https://doi.org/10.1002/wene.102

16. He, Y., Fu, P., Shen, X., & Gao, H. (2008). Cyclodextrin-based aggregates and characterization by microscopy. Micron, 39(5), 495–516. doi: https://doi.org/10.1016/j.micron.2007.06.017

https://doi.org/10.1016/j.micron.2007.06.017

17. Hu, M., Reboul, J., Furukawa, S., Torad, N. L., Ji, Q., Srinivasu, P., Ariga, K., Kitagawa, S., & Yamauchi, Y. (2012). Direct carbonization of al-based porous coordination polymer for synthesis of nanoporous carbon. Journal of the American Chemical Society, 134(6), 2864–2867. doi:  https://doi.org/10.1021/ja208940u

https://doi.org/10.1021/ja208940u

18. Hu, Q.-D., Tang, G.-P., & Chu, P. K. (2014). Cyclodextrin-based host–guest supramolecular nanoparticles for delivery: From design to applications. Accounts of Chemical Research, 47(7), 2017–2025. doi: https://doi.org/10.1021/ar500055s

https://doi.org/10.1021/ar500055s

19. Jeong, J. H., Kim, Y. A., & Kim, B.-H. (2020). Electrospun polyacrylonitrile/cyclodextrin-derived Hierarchical Porous Carbon Nanofiber/MnO2 Composites for supercapacitor applications. Carbon, 164, 296–304. doi: https://doi.org/10.1016/j.carbon.2020.03.052

https://doi.org/10.1016/j.carbon.2020.03.052

20. Larcher, D., & Tarascon, J.-M. (2014). Towards greener and more sustainable batteries for Electrical Energy Storage. Nature Chemistry, 7(1), 19–29. doi:  https://doi.org/10.1038/nchem.2085

https://doi.org/10.1038/nchem.2085

21. Lillo-Ródenas, M. A., Cazorla-Amorós, D., & Linares-Solano, A. (2003). Understanding chemical reactions between carbons and NaOH and Koh. Carbon, 41(2), 267–275. doi: https://doi.org/10.1016/s0008-6223(02)00279-8

https://doi.org/10.1016/S0008-6223(02)00279-8

22. Mahamuni, N. N., & Adewuyi, Y. G. (2010). Advanced oxidation processes (AOPS) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17(6), 990–1003. doi: https://doi.org/10.1016/j.ultsonch.2009.09.005

https://doi.org/10.1016/j.ultsonch.2009.09.005

23. Maksymych, V., Klapchuk, M., Borysiuk, A., Kulyk, Y., Stadnyk, V., Bordun, I., Kohut, Z., & Ivashchyshyn, F. (2023). Hierarchical heterostructure built on the basis of SiO2 dielectric matrix and supramolecular complex β-cyclodextrin-ferrocene: Fabrication, physical properties and applications. Materials Research Bulletin, 163, 112220. doi: https://doi.org/10.1016/j.materresbull.2023.112220

https://doi.org/10.1016/j.materresbull.2023.112220

24. Mane, G. P., Talapaneni, S. N., Anand, C., Varghese, S., Iwai, H., Ji, Q., Ariga, K., Mori, T., & Vinu, A. (2012). Preparation of highly ordered nitrogen-containing mesoporous carbon from a gelatin biomolecule and its excellent sensing of acetic acid. Advanced Functional Materials, 22(17), 3596–3604. doi: https://doi.org/10.1002/adfm.201200207

https://doi.org/10.1002/adfm.201200207

25. Ptashnyk, V., Bordun, I., Malovanyy, M., Chabecki, P., & Pieshkov, T. (2020). The change of structural parameters of nanoporous activated carbons under the influence of ultrasonic radiation. Applied Nanoscience, 10(12), 4891–4899. doi: https://doi.org/10.1007/s13204-020-01393-z

https://doi.org/10.1007/s13204-020-01393-z

26. Rouquerol Françoise. (2014). Adsorption by powders and porous solids: Principles, methodology and applications. Academic press.

27. Shvets, R. Y., Grygorchak, I. I., Borysyuk, A. K., Shvachko, S. G., Kondyr, A. I., Baluk, V. I., Kurepa, A. S., & Rachiy, B. I. (2014). New nanoporous biocarbons with Iron and silicon impurities: Synthesis, properties, and application to supercapacitors. Physics of the Solid State, 56(10), 2021–2027. doi: https://doi.org/10.1134/s1063783414100266

https://doi.org/10.1134/S1063783414100266

28. Supramolecular design of carbons for energy storage with the Reactanse-sensor functional hybridity. (2018). East European Journal of Physics, (4). doi:  https://doi.org/10.26565/2312-4334-2018-4-06

https://doi.org/10.26565/2312-4334-2018-4-06

29. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure and Applied Chemistry, 87(9-10), 1051–1069. doi: https://doi.org/10.1515/pac-2014-1117

https://doi.org/10.1515/pac-2014-1117

30. Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella, M. F., Rejeski, D., & Hull, M. S. (2015). Nanotechnology in the real world: Redeveloping the Nanomaterial Consumer Products Inventory. Beilstein Journal of Nanotechnology, 6, 1769–1780. doi: https://doi.org/10.3762/bjnano.6.181

https://doi.org/10.3762/bjnano.6.181

31. Yamaguchi, J., & Itami, K. (2017). Toward an ideal synthesis of (bio)molecules through direct arene assembling reactions. Bulletin of the Chemical Society of Japan, 90(4), 367–383. https://doi.org/10.1246/bcsj.20160365

https://doi.org/10.1246/bcsj.20160365

32. Yoshida, K.-ichi, Shimomura, T., Ito, K., & Hayakawa, R. (1999). Inclusion Complex Formation of Cyclodextrin and polyaniline. Langmuir, 15(4), 910–913. doi:  https://doi.org/10.1021/la9812471

https://doi.org/10.1021/la9812471

33. Zhang, Y. J., Huang, M. X., Zhang, Y. P., Armstrong, D. W., Breitbach, Z. S., & Ryoo, J. J. (2013). Use of sulfated cyclofructan 6 and sulfated cyclodextrins for the chiral separation of four basic pharmaceuticals by capillary electrophoresis. Chirality, 25(11), 735–742. doi:  https://doi.org/10.1002/chir.22206

https://doi.org/10.1002/chir.22206

34. Zhong, Y., Chen, Z., Chen, G., Luo, Y., Zhang, L., Hua, B., Li, J., & Sun, Y. (2021). Β-cyclodextrin-assisted fabrication of hierarchically porous carbon sheet with O/N defects for electrical double-layer supercapacitor. Journal of Materials Science: Materials in Electronics, 32(11), 15046–15058. doi: https://doi.org/10.1007/s10854-021-06057-4

https://doi.org/10.1007/s10854-021-06057-4