Нейронні мережі як засіб прогнозування значення температури за перехідним процесом

2016;
: pp. 65-70
1
Національний університет “Львівська політехніка”
2
Національний університет “Львівська політехніка”

Проаналізовано нейронні мережі як засіб прогнозування значення температури за перехідним процесом. Розглянуто штучний нейрон як основу нейронної мережі. Наведено класифікацію нейронів залежно від функцій, які вони виконують в нейронній мережі, та основні види передавальних функцій нейрона. Подано класифікацію нейронних мереж за критерієм їх архітектури, алгоритму навчання та типу завдань, які вони можуть виконувати. Зроблено висновок, що для розв’язання поставленої задачі оптимальним є застосування нейронної мережі з архітектурою прямого поширення з алгоритмом навчання з вчителем.

1. Alexander von Beckerath, Anselm Eberlein, Hermann Julien, Peter Kersten, Jochem Kreutzer, WIKA Handbook Pressure & Temperature Measurement. – Cumming: Corporate Printers, 2008. – 423 p.

2. Ярышев Н. А. Теоретические основы измерения нестационарной температуры. – 2-е изд., перераб. – Л.: Энергоатом- издат, 1990. – 256 с.

3. Каллан Р. Основные концепции нейронных сетей / пер. с англ. А. Г. Сивака. – М.: Вильямс, 2001. – 287 с.

4. Уоссермен Ф. Нейро- компьютерная техника: Теория и практика / пер. с англ. Ю. А. Зуев, В. А. Точенов. – 1992. – 184 с.

5. Круглов В. В., Борисов В. В. Искусственные нейрон- ные сети. Теория и практика. – 2-е изд. – М.: Горячая линия-Телеком, 2002. – 382 с.

6. Kriesel D. A Brief Introduction to Neural Networks, 2007, http://www. dkriesel.com/en/science/neural_networks

7. Rajesh Bordawekar, Bob Blainey, Ruchir Puri, Analyzing Analytics. – Morgan & Claypool Publishers, 2015. – 124 p.

8. Осовский С. Нейронные сети для обработки информации / пер. с польского И. Д. Рудинский. – М.: Финансы и статистика, 2002. – 344 с.

9. Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, An introduction to statistical learning. – Springer Science+Business Media New York, 2013. – 426 p.