Основи квантової термометрії

2016;
: pp. 40-47
1
Національний університет “Львівська політехніка”
2
Національний університет «Львівська політехніка»

Доведено існування кванта температури, зумовленого дисипацією одного електрона на фононах за одиницю часу, та теоретично визначено його значення через фундаментальні фізичні сталі з установленою непевністю, залежною від непевностей методів визначення цих сталих. Показано можливість створення сучасного еталона температури на базі фундаментальних фізичних сталих із залученням еталона електричного опору на базі інверсного значення кванта електропровідності та еталона напруги на базі масиву переходів Джозефсона. 

1. Mills Ia., Quinn T., Mohr P., Taylor B. and Williams E. The New SI: units and fundamental constants (Royal Society Discussing Meeting, Jan. 2011).

2. Томилин К. А. Планковские величины // 100 лет квантовой теории. ис- Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua Вимірювальна техніка та метрологія, № 77, 2016 р. 47 тория. Физика. Философия : труды междунар. конф. — М.: НИА-Природа, 2002.— С. 105–113.

3. Podesta M. de The definition of the Kelvin in the New SI: its rationale, implementation and implications // Abstracts of XIII International Symposium on Temperature and Thermal Measurements in Industry and Science, TEMPMECO 2016, Zakopane, Polska, 26.06–01.07.2016. – P. 12.

4. Consultative Committee for Thermometry, Mise en Pratique for the definition of the Kelvin (Bureau International des Poids et Measures, S’evres, France, 2006).

5. Дорожовець М. М. Опрацювання результатів вимірювань: навч. посібник. – Львів: Вид-во Нац. ун-ту "Львівська політехніка", 2007.

6. Hohmann M., Breitkreutz P., Schalles M., Fröhlich T. Calibration of heat flux sensors with small heat fluxes // In Proceedings of the 58 Internationales Wissenschaftliches Kolloquium: “In Shaping the future by engineering”, p. 29 (Technische Universität, Ilmenau, Germany, 08–12 Sept. 2014).

7. Lindeman M. Microcalorimetry and transition-edge sensor, Thesis UCRL-LR-142199 (US Department of Energy, Laurence Liverpool National laboratory, April 2000).

8. Benz S. P., A. Pollarolo J. Qu, Rogalla H., Urano C., Tew W. L., Dresselhaus P. D., White D. R. An Electronic Measurement of the Boltzmann Constant, Metrologia, 48 142 (2011), 23 p.

9. Pitre L., Sparasci F., Truong D., GuillouA., Risegari L., ·Him M. Measurement of the Boltzmann Constant kB Using a Quasi-Spherical Acoustic Resonator, Int J Thermophys. 32:1825–1886 (2011); DOI 10.1007/s10765-011-10.

10. Giesbers A. J., Rietveld G., Houtzager E. et al. Quantum resistance metrology in graphene, Applied Physics Letters, 93, pp. 222109-1 … 3 (2008); DOI: 10, 1063/1.3043426.

11. A Practical Josephson Voltage Standard at One Volt. http://www.lee. eng.uerj.br/ downloads/graduacao/ medidas_eletricas JosephsonJunction.pdf.

12. Joyez P., Vion D., Götz M., Devoret M. and Esteve D. The Josephson effect in nanoscale tunnel junctions, Journ. of Superconductivity, 12, 6, pp. 757–766 (1999).

13. Sahoo R., Mishra R. Simulations of Carbon Nanotube Field Effect Transistors, Internat. Journ. of Electronic Engineering Research, 1, 2, pp. 117–125 (2009).

14. The NIST Reference on Constants, Units, and Uncertainty, CODATA Internationally Recommended 2014 Values on Fundamental Physical Constants..

15. Pitre L., Risegari L., Sparasci F., Plimmer M. D., Himbert M. E., Giuliano Albo P. Determination of the Boltzmann constant from the speed of sound in helium gas at the triple point of water. Metrologia, Focus on the Boltzmann Constant, 52, 5 (BIPM & IOP Publishing, 19 Aug. 2015).

16. Daussy C., Guinet M., Amy-Klein A., Djerroud K., et al, First Direct Determination of the Boltzmann Constant by an Optical Method. http://arxiv.org/ftp/quant-ph/papers /0701/0701176.pdf.

17. Novoselov K. S. et al. Room-Temperature Quantum Hall Effect in Graphene. Science, 315, 1379 (2007).