This paper presents a study on organizing requirements for automated meat quality control systems. It identifies key quality indicators–color, texture, marbling, and gloss–and analyzes the technical and functional parameters essential for practical assessment. The research highlights integrating computer vision, image processing, and machine learning algorithms to enhance objectivity, accuracy, and evaluation speed. The proposed approach aims to reduce human influence, enable real-time monitoring, and offer scalable solutions suitable for large-scale producers and small enterprises.
1. I. F. Ovchynnikova, S. O. Dubinina, T. M. Letuta, M. O. Naumenko, and A. A. Dubinina, Methods for determining the falsification of goods. Kyiv: Pub.dim "Professional", 2010. [Online]. Available: https://library.nlu.edu.ua/ POLN_TEXT/CUL/24-Metodi%20viznachennya% 20falsif%20tovariv-Dubinina.pdf
2.Y. Shi et al., “A review on meat quality evaluation methods based on non-destructive computer vision and artificial intelligence technologies”, Food Sci. Animal Resour., vol. 41, no. 4, pp. 563–588, Jul. 2021. Accessed:Apr. 2, 2025. [Online]. Available: https://doi.org/10.5851/ kosfa.2021.e25
3. K. O. Honikel, “Assessment of meat quality”, in Animal Biotechnology and the Quality of Meat Production. Elsevier, 1991, pp. 107–125. Accessed: Apr. 2, 2025. [Online]. Available: https://doi.org/10.1016/b978-0-444- 88930-0.50013-4
4. “HACCP principles & application guidelines.” U.S. Food & Drug. Accessed: Apr. 2, 2025. [Online]. Available: https://www.fda.gov/food/hazard-analysis-critical-control- point-haccp/haccp-principles-application-guidelines
5. “Food safety”, in Iso 22000. United Nations, 2007, pp. 11–16. Accessed: Apr. 2, 2025. [Online]. Available: https://doi.org/10.18356/adf67d38-en
6. “U.S. Department of agriculture.” Accessed: Apr. 2, 2025. [Online]. Available: https://www.usda.gov/
7. C. Ruedt, M. Gibis, and J. Weiss, “Meat color and iridescence: Origin, analysis, and approaches to modulation”, Comprehensive Rev. Food Sci. Food Saf., Jun. 2023. Accessed: Apr. 2, 2025. [Online]. Available: https://doi.org/10.1111/1541-4337.13191
8. R. Warner et al., “Meat tenderness: Advances in biology, biochemistry, molecular mechanisms and new tech- nologies”, Meat Sci., p. 108657, Aug. 2021. Accessed: Apr. 2, 2025. [Online]. Available: https://doi.org/10.1016/ j.meatsci.2021.108657
9. W. Cheng, J.-H. Cheng, D.-W. Sun, and H. Pu, “Marbling analysis for evaluating meat quality: Methods and techni- ques”, Comprehensive Rev. Food Sci. Food Saf., vol. 14, no. 5, pp. 523–535, Aug. 2015. Accessed: Apr. 2, 2025. [Online].Available: https://doi.org/10.1111/1541-4337.12149
10. “Carcass beef grades and standards | agricultural mar- keting service.” Home | Agricultural Marketing Service. Accessed: Apr. 2, 2025. [Online]. Available: https://www. ams.usda.gov/grades-standards/carcass-beef-grades-and- standards
11. T. Gotoh, T. Nishimura, K. Kuchida, and H. Mannen, “The Japanese Wagyu beef industry: Current situation and future prospects – A review”, Asian-Australas. J. Animal Sci., vol. 31, no. 7, pp. 933–950, Jul. 2018. Accessed:Apr. 2, 2025. [Online]. Available: https://doi.org/ 10.5713/ajas.18.0333
12. L. Chen, S. Li, Q. Bai, J. Yang, S. Jiang, and Y. Miao, “Review of image classification algorithms based on convolutional neural networks”, Remote Sens., vol. 13, no. 22, p. 4712, Nov. 2021. Accessed: Apr. 3, 2025. [Online]. Available: https://doi.org/10.3390/rs13224712
13. N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni, “U-Net and its variants for medical image segmentation: A review of theory and applications”, IEEE Access, vol. 9, pp. 82031–82057, 2021. Accessed: Apr. 3, 2025. [Online].Available: https://doi.org/10.1109/access.2021.3086020
14. K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques”, Global Transitions Proc., Apr. 2022. Accessed: Apr. 3, 2025. [Online]. Available: https://doi.org/10.1016/j.gltp.2022.04.020