COMPARATIVE ASSESSMENT OF RENEWABLE SOURCES FOR CRITICAL FACILITIES OF DECENTRALIZED SUPPLY

1
National Joint Stock Company "Naftogaz of Ukraine", Pukhov Institute for Modelling in Energy Engineering
2
Lviv State University of Life Safety, Ukraine
3
Lviv Politechnic National University
4
Національний університет «Львівська політехніка»
5
Lviv Politechnic National University

The concept of energy supply is widely discussed, but there is no consensus on ways of its provision. In the current research, we have provided an analysis of available combinations of renewable sources for decentral- ized energy supply. It is important for critical facilities on territorial society and district levels. The article considers the safety of the technical component of a complex organizational and technical system by studying the functional relationship between the parameters: temperature, time, active power, hydrogen participation, etc. The idea of the work is to evaluate the ratios of generating capacities of different types of renewable sources in complex systems and select highly efficient technologies and energy means for decentralized energy supply.

  1. Hickmann, T., Widerberg, O., Lederer, M., & Pattberg, P. (2021). The United Nations Framework Convention on Climate Change Secretariat as an orchestrator in global climate policymaking. International Review of Adminis- trative Sciences, 87(1), 21-38. https://www.un.org › con- ferences › energy2021
  2. IRENA (2022), World Energy Transitions Outlook 2022:1.5°C Pathway, International Renewable Energy Agency, Abu Dhabi. Available for download: https://www.irena. org/Digital-Report/World-Energy-Transitions-Outlook- 2022#page-1
  3. Borys Pokhodenko. (2023). Review and comparative analysis of energy security concepts of the European Un- ion and Ukraine. The Journal of V. N. Karazin Kharkiv National University. Series: International Relations. Eco- nomics. Country Studies. Tourism, (17), 56-79. https://doi.org/10.26565/2310-9513-2023-17-06 .
  4. Bert Kruyt, D.P. van Vuuren, H.J.M. de Vries, H. Gro- enenberg, Indicators for energy security, Energy Policy, Volume 37, Issue 6, 2009, Pages 2166-2181, https://doi.org/10.1016/j.enpol.2009.02.006.
  5. Richard Holden, Dimitri V. Val, Roland Burkhard, Sarah Nodwell, A network flow model for interdependent infra- structures at the local scale, Safety Science, Volume 53, 2013, Pages 51-60, https://doi.org/10.1016/j.ssci.2012.08.013
  6.      Fatma S. Hafez, Bahaaeddin Sa'di, M. Safa-Gamal, Y.H. Taufiq-Yap, Moath Alrifaey, Mehdi Seyedmahmoudian, Alex Stojcevski, Ben Horan, Saad Mekhilef, Energy Effi- ciency in Sustainable Buildings: A Systematic Review with Taxonomy, Challenges, Motivations, Methodological Aspects, Recommendations, and Pathways for Future Re- search, Energy Strategy Reviews, Volume 45, 2023, 101013, https://doi.org/10.1016/j.esr.2022.101013
  7.      C. Zhang, C. Cui, Y. Zhang, J. Yuan, Y. Luo, W. Gang, A review of renewable energy assessment methods in green building and green neighborhood rating systems, Energy Build. 195 (2019) 68–81, https://doi.org/10.1016/ j.enbuild.2019.04.040
  8.      Ranganathan R et al. (2023) A comparative study of re- newable energy sources for power generation in rural ar- eas ICSERET-2023, E3S Web of Conferences 387, 05011, https://doi.org/10.1051/e3sconf/202338705011
  9. Ghania et al.: ΑReliability Study of Renewable Energy Resources and their Integration with Utility Grids Engi- neering, Technology & Applied Science Research, Vol. 12, No. 5, 2022, 9078-9086 https://doi.org/10.48084/ etasr.5090
  10. Fenerich F.C. et al. Energy efficiency in industrial envi- ronments: an updated review and a new research agenda, Revista Gestão e Secretariado (GeSec), São Paulo, SP, v. 14, n. 3, 2023, p. 3319-3347. http://doi.org/10.7769/ gesec.v14i3.1802
  11. Rehak D., Markuci J., Hromada M., Barcova K. Quantita- tive evaluation of the synergistic effects of failures in a critical infrastructure system, International Journal of Critical Infrastructure Protection, Volume 14, 2016, P.3-17. https://doi.org/10.1016/j.ijcip.2016.06.002 .
  12. WUTMARC   HYDROGEN   STATIONS.   URL:https://h2.wutmarc.ua
  13. Ukraine and the EU concluded a strategic partnership in the fields of green hydrogen and biogas URL: https://ecopolitic. com.ua/ua/news/ukraina-ta-ies-uklali-strategichne- partnerstvo-u-sferah-zelenogo-vodnju-ta-biogazu/
  14. Naftogaz signs green hydrogen "H2EU+Store" MOU on the transport of hydrogen produced in Ukraine to Germany. URL: https://www.naftogaz.com/news/green-hydrogen- ukraine-germany
  15. Choi, Y. Renewable Energy Systems: Optimal Planning and Design. Appl. Sci. 2023, 13, 3986. https://doi.org/10.3390/app13063986
  16. Ukraine's first green hydrogen plant to be built in Lviv region. URL: https://zaxid.net/pershiy_zeleniy_n1525661
  17. Replace-gas-in-Ukrainian-GTS-with-green-hydrogen.URL: http://surl.li/nsehr
  18. Merten, F., Scholz, A., Krüger, C., Heck, S., Girard, Y., Mecke, M., & Goerge, M. (2020). Bewertung der Vorund Nachteile von Wasserstoffimporten im Vergleich zur heimischen Produktion, Studie für den Landesverband Erneuerbare Energien NRW e. V., Wuppertal Institut & DIW Econ. https://doi.org/10.48506/opus-7948
  19. Glenk, G., & Reichelstein, S. (2019). Economics of con- verting renewable power to hydrogen. Nature Energy, 4 (3), 216-222. https://doi.org/10.1038/s41560-019-0326-1
  20. G. Golub, M. Tregub, A. Holubenko, V. Chuba, M. Tereshchuk, Determining of the influence of reactor pa- rameters on the uniformity of mixing substrate compo- nents. Eastern-European Journal of Enterprise Technolo- gies, 2020, 6(7-108), pp. 60–70 http://journals.uran.ua/ ee- jet/article/view/217159
  21. V. Zubenko, O. Epik, V. Antonenko. Development and optimization of fast ablative pyrolysis technology in Ukraine. Energetika. 2018, T.64. No.1 P. 1–10. https://kriger.com.ua/en/projects/
  22. L. S. Chervinsky, "The ways and effects of ultraviolet radiation on the human and animal body," Proc. SPIE 11363, Tissue Optics and Photonics, 113630I (2 April 2020) doi: 10.1117/12.2552719. https://www.scopus.com/ record/display.uri?eid=2-s2.0- 85087085997&origin=resultslist&sort=plf-f www.altek.ua
  23. Y. V. Tascheiev, S. V. Voitko, O. O. Trofimenko, O. O. Repkin, T. S, Kudrya. Global trends in the development of hydrogen technologies in industry. BusinessInform. 2020.№8. C. 103-114. https://doi.org/10.32983/2222-4459- 2020-8-103-114
  24. V. M. Karpenko, Yu. P. Starodub. Research of geothermal energy parameters in deep wells JGD. 2017; Volume 1(22)  2017,  Number  1(22)  2017  :  85-97 https://doi.org/10.23939/jgd2017.01.085
  25. T. G. Karayiannis, et. al. (2022) 'Energy availability from deep geothermal wells using coaxial heat exchangers'. 19th International Conference on Sustainable Energy Technologies; 16 Aug 2022; Istanbul, Turkey; Sustainable
  26. Energy Technologies. pp.1-10 URL: http://bura.brunel. ac.uk/handle/2438/25108
  27. T. Kujawa, T. Nowak, W. Stachel, Aleksander. (2006). Utilization of existing deep geological wells for acquisi- tion of geothermal energy. Energy. 31. 650-664. https://doi.org/10.1016/j.energy.2005.05.002 .
  28. A. Baroutaji, T. Wiberforce, M. Ramadan, A. Ghani Olabi. A comprehensive investigation of hydrogen and fuel technology in the aviation and aerospace sectors. Renewable and Sus- tainable Energy Reviews. Volume 106, May 2019, Pages 31–
  29. 40. DOI: 10.1016/j.rser.2019.02.022
  30. V. Karpenko, Yu. Starodub, A. Havrys. Computer Modeling in the Application to Geothermal Engineering. – Advances in Civil Engineering, vol. 2021, Article ID 6619991, 23 pages,
  31. 2021. https://doi.org/10.1155/2021/ 6619991
  32. A.-J. Perea-Moreno, Q. Hernandez-Escobedo, The Sus- tainable City: Advances in Renewable Energy and Energy
  33. Saving Systems. Energies 2021, 14, 8382. https://doi.org/ 10.3390/en14248382
  34. P. Gasser, P. Lustenberger, M. Cinelli, W. Kim, M. Spada, P. Burgherr, S. Hirschberg, B. Stojadinovic, T. Sun (2019): A review on resilience assessment of energy sys- tems, Sustainable and Resilient Infrastructure To link to this article: https://doi.org/10.1080/23789689.2019. 1610600
  35. Y. Starodub, V. Karpenko, A. Havrys, and D. Behen, “Development of the methodology of energy and envi- ronmental safety of Ukraine based on own geother- mic”, GJ, vol. 45, no. 4, Aug. 2023. DOI: https://doi.org/10.24028/gj.v45i4.286289
  36. R. Holden, D. Val, R. Burkhard, S. Nodwell, A network flow model for interdependent infrastructures at the local scale, Safety Science, V 53, 2013, P 51-60, https://doi.org/10.1016/j.ssci.2012.08.013